Mathematiques

Mathématiques

Les mathématiques constituent un domaine de connaissances abstraites construites à l'aide de raisonnements logiques sur des concepts tels que les nombres, les figures, les structures et les transformations. Les mathématiques désignent aussi le domaine de recherche visant à développer ces connaissances, ainsi que la discipline qui les enseigne.

Les mathématiques se distinguent des autres sciences par un rapport particulier au réel. Elles sont de nature purement intellectuelles, basées sur des axiomes déclarés vrais (c'est-à-dire que les axiomes ne sont pas soumis à l'expérience mais ils en sont souvent inspirés notamment dans le cas des mathématiques classiques) ou sur des postulats provisoirement admis. Un énoncé mathématique – dénommé généralement théorème, proposition, lemme, fait, scholie ou corollaire – est considéré comme valide lorsque le discours formel qui établit sa vérité respecte une certaine structure rationnelle appelée démonstration, ou raisonnement logico-déductif.

Bien que les résultats mathématiques soient des vérités purement formelles, ils trouvent cependant des applications dans les autres sciences et dans différents domaines de la technique. C'est ainsi qu'Eugène Wigner parle de « la déraisonnable efficacité des mathématiques dans les sciences de la nature »[1].

Sommaire

Étymologie

Le terme « mathématique » vient du grec, par l'intermédiaire du latin. Le mot μάθημα (máthēma) signifie « science, connaissance » puis « mathématiques », il a donné naissance à l'adjectif μαθηματικός (mathematikos), d'abord « relatif au savoir » puis « qui concerne les sciences mathématiques ». Cet adjectif a été adopté en latin (mathematicus) et dans les langues romanes par la suite (« mathématique » en français, matematica en italien, etc.), ainsi que dans de nombreuses autres langues[2],[3].

La forme neutre de l'adjectif μαθηματικός a été substantivée en τα μαθηματικά (ta mathēmatiká) pour désigner les sciences mathématiques dans leur ensemble. Cette forme plurielle, utilisée par Aristote, explique l'usage du pluriel pour le substantif en latin chez Cicéron (mathematica) puis en français et dans les autres langues européennes. Le singulier est parfois employé (« la mathématique » en français, mathematic en anglais), mais « le mot donne alors au contexte une teinte d'archaïsme ou de didactisme »[4].

Dans l'argot scolaire, le terme « mathématiques » est fréquemment apocopé : « les maths ».

Historique

Article détaillé : histoire des mathématiques.

Il est fort probable que l'homme ait développé des compétences mathématiques avant l'apparition de l'écriture. Le premier objet reconnu attestant de compétences calculatoires est l'os d'Ishango datant de 20 000 ans avant notre ère[5],[6],[7]. Le développement des mathématiques en tant que connaissance transmise dans les premières civilisations est lié à leurs applications concrètes : le commerce, la gestion des récoltes, la mesure des surfaces, la prédiction des événements astronomiques, et parfois l'exécution de rituels religieux.

Les premiers développements mathématiques concernaient l'extraction des racines carrées, des racines cubiques, la résolution d'équations polynomiales, la trigonométrie, le calcul fractionnaire, l'arithmétique des entiers naturels... Ils s'effectuèrent dans les civilisations akkadiennes, babyloniennes, égyptiennes, chinoises ou encore de la vallée de l'Indus.

Dans la civilisation grecque, les mathématiques, influencées par les travaux antérieurs et les spéculations philosophiques, recherchent davantage d'abstraction. Les notions de démonstration et de définition axiomatique sont précisées. Deux branches se distinguent, l'arithmétique et la géométrie. Au IIIe siècle av. J.-C., les Éléments d'Euclide[8] résument et ordonnent les connaissances mathématiques de la Grèce.

Une page du traité de Al-Khawarizmi.

La civilisation islamique a permis la conservation de l'héritage grec et l'interfécondation avec les découvertes chinoises et indiennes, notamment en matière de représentation des nombres[réf. nécessaire]. Les travaux mathématiques sont considérablement développés tant en trigonométrie (introduction des fonctions trigonométriques) qu'en arithmétique. L'analyse combinatoire, l'analyse numérique et l'algèbre polynomiale sont inventées et développées.

Durant la Renaissance européenne, une partie des textes arabes sont étudiés et traduits en latin. La recherche mathématique se concentre en Europe. Le calcul algébrique se développe suite aux travaux de Viète et Descartes. Newton et Leibniz, indépendamment, inventent le calcul infinitésimal.

David Hilbert, mathématicien allemand.

Au cours du XVIIIe siècle et du XIXe siècle, les mathématiques connaissent de forts développements avec l'étude systématique des structures, à commencer par les groupes issus des travaux de Galois sur les équations polynomiales, et les anneaux introduits par Dedekind.

Le XIXe siècle voit avec Hilbert et Cantor le développement d'une théorie axiomatique sur tous les objets étudiés, soit la recherche des fondements mathématiques[réf. nécessaire]. Ce développement de l'axiomatique conduira plusieurs mathématiciens du XXe siècle à chercher à définir toutes les mathématiques à l'aide d'un langage : la logique.

Le XXe siècle a connu un fort développement en mathématiques avec une spécialisation des domaines, et la naissance ou le développement de nombreuses nouvelles branches (théorie de la mesure, théorie spectrale, topologie algébrique et géométrie algébrique, par exemple). L'informatique a eu un impact sur la recherche. D'une part, elle a facilité la communication et le partage des connaissances, d'autre part, elle a fourni un formidable outil pour la confrontation aux exemples. Ce mouvement a naturellement conduit à la modélisation et à la numérisation.

Domaines des mathématiques

Un découpage des mathématiques en deux, trois ou quatre domaines différents est couramment utilisé[réf. nécessaire] : algèbre et analyse, ou bien algèbre, analyse et géométrie, ou bien algèbre, analyse, géométrie et probabilités. De tels découpages ne sont pas évidents et les frontières les séparant sont toujours mal définies. En effet, de nombreux résultats font appel à des compétences mathématiques variées. Le théorème de Wiles, établi en 1994, en est un exemple. Bien que formulé de manière dite arithmétique, la preuve nécessite de profondes compétences en analyse et en géométrie.

Domaines fondamentaux

L'algèbre est l'ensemble des méthodes mathématiques visant à étudier et développer les structures algébriques et à comprendre les relations qu'elles entretiennent entre elles. L'algèbre, au sens actuel, trouve historiquement ses origines dans la compréhension des équations polynomiales et dans les développements des méthodes de résolution : les recherches dans ces domaines ont suscité l'émergence des notions qui fondent la théorie des groupes, de la théorie de Galois ou encore de la géométrie algébrique.

En un sens très restrictif, l'analyse est la partie des mathématiques s'intéressant aux questions de régularité des applications d'une variable réelle ou complexe : on parle alors plus volontiers d'analyse réelle ou d'analyse complexe. En un sens élargi, elle englobe toutes les méthodes mathématiques qui s'y apparentent, et un certain nombre de méthodes pour comprendre et analyser les espaces de fonctions.

La géométrie tente de comprendre en premier lieu les objets dans l'espace, puis par extension s'intéresse aux propriétés d'objets plus abstraits, à plusieurs dimensions, introduits selon plusieurs approches, relevant autant de l'analyse que de l'algèbre.

Les probabilités tentent en un sens large de formaliser tout ce qui relève de l'aléatoire. Bien qu'anciennes, elles ont connu un renouveau avec la théorie de la mesure. La compréhension des lois aléatoires rendant compte au mieux des données déjà réalisées forme les statistiques.

Exemples de domaines transversaux

Charles Gustave Jacob Jacobi, connu pour ses développements en théorie analytique des nombres, entre analyse complexe et arithmétique

De nombreux domaines de recherche se situent transversalement par rapport au découpage donné ci-dessus :

  • Les mathématiques discrètes (associées à l'essor de l'informatique) sont l'exemple le plus typique de découpage transversal car elles dressent un clivage dans presque toutes les branches des mathématiques (groupes finis, probabilités discrètes, géométrie discrète, optimisation en nombres entiers, nouvelles branches de l'algèbre : monoïdes, dioïdes...)
  • La théorie des nombres (qui généralise l'arithmétique élémentaire) utilise tout autant des méthodes analytiques que des méthodes algébriques, avancées, pour résoudre des problèmes qui peuvent souvent être énoncés de façon élémentaire.
  • La topologie algébrique tend à associer à des objets géométriques de natures diverses des invariants de nature algébrique. Elle se situe donc à la frontière de la géométrie et de l'algèbre. Toutefois, pour des objets géométriques présentant une certaine structure analytique, ces invariants algébriques peuvent parfois se définir ou se comprendre en faisant uniquement appel à des outils essentiellement d'analyse. La majeure partie de la recherche en 2009 en topologie algébrique tend à oublier la structure topologique et à réduire les questions à des problèmes essentiellement d'algèbre.
  • En un certain sens, les systèmes dynamiques se situent entre la géométrie, l'analyse et les probabilités. Ils tendent à comprendre de manière qualitative ce qui s'assimile à une loi d'évolution. Les objets étudiés relèvent de l'analyse (équations différentielles par exemples), des probabilités (itération d'une bijection mesurable), ou de la géométrie (espaces homogènes). Le traitement qui y est consacré fait l'objet d'interprétations essentiellement de nature géométriques, tout en utilisant des outils avancés d'analyse fonctionnelle, de théorie des processus, de géométrie différentielle, etc. Des résultats d'arithmétique peuvent aussi être obtenus par des considérations relevant des systèmes dynamiques.
  • La géométrie différentielle se situe à la frontière de la géométrie et de l'analyse, et ce à plusieurs égards. La définition de ces objets d'étude fait appel aux théorèmes de calcul différentiel, mais l'étude elle-même est grande consommatrice d'analyse. Des liens entre géométrie différentielle et probabilités existent aussi.
  • La géométrie algébrique est l'exemple d'un domaine en un sens strict à la rencontre de l'algèbre et de la géométrie. Elle trouve ses origines dans les travaux sur la résolution des équations cubiques. Le premier objet d'étude de la géométrie algébrique est la variété algébrique, lieu d'annulation d'équations polynomiales : il a une signification à la fois algébrique et géométrique. Ce domaine connut un fort développement au XIXe siècle, avec notamment le théorème de Bézout. Les développements récents initiés par Grothendieck connaissent de nombreuses applications en théorie des nombres, ce qui constitue la géométrie arithmétique.
  • La théorie des opérateurs relève plutôt de l'analyse, ou encore de l'analyse fonctionnelle (par exemple, pour les problèmes de régularité des solutions d'équations aux dérivées partielles elliptiques, notamment le problème de Poisson). Mais cette théorie connaît de nombreuses applications en géométrie différentielle où le langage des opérateurs s'avère particulièrement adapté. Le développement de la théorie des opérateurs a fait appel à des méthodes de nature probabiliste, notamment pour ce qui s'appelle le calcul fonctionnel. Cette théorie trouve des extensions en géométrie non commutative. Les objets d'études se trouvent être des généralisations d'algèbres d'opérateurs.

Mathématiques appliquées et mathématiques pures

Navstar-2 - La conquête aérospatiale : grande consommatrice de mathématiques appliquées.
Simulation numérique d'un crash d'une voiture. - L'analyse numérique : domaine applicatif des mathématiques.

On fait parfois la distinction entre mathématiques pures et mathématiques appliquées :

  • Les mathématiques pures ont pour objectif le développement des connaissances mathématiques pour elles-mêmes sans aucun intérêt a priori pour les applications, sans aucune motivation d'autres sciences. L'objet de la recherche mathématique peut ainsi être une meilleure compréhension d'une série d'exemples particuliers abstraits, sur lesquels s'appuie et se développe la réflexion mathématique, la généralisation d'un aspect d'une discipline ou la mise en évidence de liens entre diverses disciplines des mathématiques.
  • Au contraire, les mathématiques appliquées sont la mise en œuvre des connaissances mathématiques pour les besoins de formalisme d'autres sciences (physique, informatique, biologie, astrophysique...), et pour des applications industrielles (ingénierie par exemple). Elles tendent à développer ces outils mathématiques pour répondre à ces demandes, pour résoudre des problèmes posés en termes concrets.

En France, cette distinction structure souvent les équipes de recherche, sans forcément hypothéquer les possibilités d'interactions entre elles. Toutefois, la pertinence de cette distinction est remise en cause par un certain nombre de mathématiciens. L'évolution des domaines et de leurs objets d'étude peut également contribuer à déplacer une éventuelle frontière ou notion de séparation. Selon une boutade de Ian Stewart, mathématicien pur, « La différence entre mathématiciens purs et appliqués, c'est que les seconds pensent qu'il n'y a pas de différence, alors que les premiers savent très bien qu'il y en a une ».[réf. nécessaire]

Les mathématiques appliquées, en un sens mal définies, comprennent entre autres l'analyse numérique, les statistiques appliquées et la théorie de l'optimisation mathématique. Certains domaines de recherche des mathématiques sont nées à la frontière avec d'autres sciences (voir ci-dessous).

Pratique mathématique

Activité de recherche

Article détaillé : recherche mathématique.

La recherche mathématique ne se limite pas qu'à la démonstration des théorèmes. L'une des méthodes les plus fructueuses de recherche mathématique est la mise en rapprochement de domaines a priori éloignés en mettant en lumière des phénomènes analogues (par exemple, la géométrie euclidienne et les équations différentielles linéaires). Voir des phénomènes analogues se produire peut conduire à vouloir adapter des résultats d'un domaine des mathématiques à un autre, à reformuler des éléments de démonstration en termes équivalents, à tenter une axiomatisation d'un objet (par exemple, ce pourrait être la notion d'espace vectoriel) qui regrouperait les deux domaines... Dans ce dernier cas, ce nouvel objet deviendrait alors un objet d'étude par lui-même. Dans certains cas, l'identification d'objets a priori différents devient nécessaire : le langage des catégories permet de faire ce genre de choses.

Une autre méthode de recherche est la confrontation aux exemples et aux cas particuliers. Cette confrontation peut permettre de réfuter des propriétés qu'on pensait ou espérait être vraies (conjectures). Au contraire, elle peut permettre de vérifier des propriétés ou d'amener à les formaliser. Par exemple, en géométrie riemannienne, l'étude des surfaces (donc des objets en dimension 2) et de leurs géodésiques a finalement conduit Anosov à formaliser le difféomorphisme d'Anosov, une transformation possédant d'intéressantes propriétés dynamiques.

Langage mathématique

Article détaillé : Langage mathématique.

Les mathématiques utilisent un langage qui leur est propre. Certains termes du langage courant, comme groupe, anneau, corps ou variété peuvent être empruntés et redéfinis pour désigner des objets mathématiques. Mais souvent des termes sont formés et introduits selon les besoins : isomorphisme, topologie, itération... Le nombre élevé de ces termes rend difficile la compréhension des mathématiques par les non-mathématiciens.

Le langage mathématique s'appuie aussi sur l'usage de formules. Elles comportent des symboles, les uns en rapport avec le calcul propositionnel comme le connecteur binaire d'implication \Rightarrow ou le connecteur unaire de négation \neg, d'autres en rapport avec le calcul des prédicats, comme le quantificateur universel \forall ou le quantificateur existentiel \exists. La plupart des notations utilisées au XXIe siècle ont été introduites après le XVIIe siècle seulement.

Il existe un langage mathématique qui décrit les mathématiques. En ce sens, on dit qu'il s'agit d'un métalangage : il s'agit de la logique mathématique.

Rapport des mathématiques avec les autres sciences

Les mathématiques entretiennent des rapports particuliers avec toutes les sciences, au sens large du terme. L'analyse de données (interprétation graphique, données statistiques...) fait appel à des compétences mathématiques variées. Mais des outils avancés de mathématiques interviennent dans les modélisations.

Toutes les sciences dites dures, à l'exception des mathématiques, tendent à une compréhension du monde réel. Cette compréhension passe par la mise en place d'un modèle, prenant en compte un certain nombre de paramètres considérés comme causes d'un phénomène. Ce modèle constitue un objet mathématique, dont l'étude permet une meilleure compréhension du phénomène étudié, éventuellement une prédiction qualitative ou quantitative quant à son évolution future.

La modélisation fait appel à des compétences relevant essentiellement de l'analyse et des probabilités, mais les méthodes algébriques ou géométriques s'avèrent utiles.

Mathématiques et physique

Les mathématiques sont nées d'une volonté de compréhension de l'espace ambiant : la géométrie naît de la modélisation de formes idéalisées, et l'arithmétique des besoins des gestions des quantités. Astronomie et géométrie se sont longtemps confondues, jusque dans les civilisations islamiques. Les mathématiques et la physique, après s'être différenciées, ont gardé d'étroits liens. Dans l'histoire contemporaine de ces deux sciences, les mathématiques et la physique se sont influencées mutuellement. La physique moderne use à outrance des mathématiques, en faisant une modélisation systématique pour comprendre les résultats de ses expériences :

  • Cette modélisation peut faire appel à des outils mathématiques déjà développés. Ainsi l'usage des métriques en géométrie différentielle est un outil essentiel sur lequel repose notamment la relativité générale, développée par le mathématicien Minkowski puis par le physicien Einstein. Cet usage est aussi utilisé dans les autres théories post-newtoniennes.
  • Cette modélisation encourage les mathématiciens à s'intéresser davantage à telle ou telle structure mathématique pour les besoins de la physique.
  • Cette modélisation demande parfois au contraire des outils mathématiques non encore développés et ouvre des nouvelles perspectives mathématiques. Ainsi, Isaac Newton a-t-il développé le calcul différentiel pour pouvoir écrire les lois (classiques) du mouvement ; s'intéressant à la diffusion de la chaleur dans les corps, Joseph Fourier découvre les séries qui portent son nom, porte ouverte sur la théorie de Fourier ; ... Plus récemment, citons les problèmes de quantification géométrique, d'intégrales de Feynman, de polynômes de Donaldson...

Un domaine de recherche spécifique, la physique mathématique, tend précisément à développer les méthodes mathématiques mises à l'usage de la physique.

Le lien étroit entre mathématiques et physique se reflète dans l'enseignement supérieur des mathématiques. L'enseignement de la physique fait appel à des cours de mathématiques pour physiciens ; et il n'est pas rare que les cursus de mathématiques dans les universités incluent une initiation facultative à la physique.

Schéma de pendule.

Mathématiques et informatique

L'essor des techniques au XXe siècle a ouvert la voie à une nouvelle science, l'informatique. Celle-ci est intimement liée aux mathématiques, de diverses manières : certains pans de la recherche en informatique théorique peuvent être considérés comme d'essence mathématique, d'autres branches de l'informatique faisant plutôt usage des mathématiques. Les nouvelles technologies de communication ont quant à elles ouvert la voie aux applications à des branches des mathématiques parfois très anciennes (arithmétique), notamment en ce qui concerne les problèmes de sécurité des transmissions : cryptographie et théorie des codes.

En contrepartie, les sciences informatiques influencent l'évolution moderne des mathématiques.

Les mathématiques discrètes forment un domaine de recherche actuel des mathématiques visant à développer les méthodes utilisées en science informatique, incluant la théorie de la complexité, la théorie de l'information, la théorie des graphes... Parmi les problèmes ouverts, citons notamment le célèbre P=NP[9] en théorie de la complexité, qui fait partie des 7 problèmes du prix du millénaire. Celui qui arrivera à décider si P et NP sont différents ou égaux recevra un montant de 1 000 000 USD.

Les mathématiques et la biologie, la chimie et la géologie

La biologie est grande consommatrice de mathématiques et notamment de probabilités. La dynamique d'une population se modélise couramment par des chaînes de Markov (théorie des processus discrets) ou par des équations différentielles couplées. Il en va de même pour l'évolution des génotypes : le principe de Hardy-Weinberg, souvent évoquée en génétique, relève de propriétés générales sur les processus à temps discret (existence de lois limites). Plus généralement, la phylogéographie fait appel à des modélisations probabilistes. De plus, la médecine use de tests (statistiques) pour comprendre la validité de tel ou tel traitement. Un domaine spécifique de recherche à la frontière de la biologie est né : la biomathématique.

Depuis le début du XXIe siècle, la chimie organique a fait appel à l'informatique pour pouvoir modéliser les molécules en trois dimensions : il s'avère que la forme d'une macromolécule en biologie est variable et détermine son action. Cette modélisation fait appel à la géométrie euclidienne ; les atomes forment une sorte de polyèdre dont les distances et les angles sont fixés par les lois d'interaction.

Les géologies structurales et climatologiques font appel à des modèles mêlant des méthodes probabilistes et analytiques, pour pouvoir prédire du risque de catastrophe naturelle. La complexité des modèles est telle qu'une branche de recherche est née à la frontière des mathématiques et de la géophysique, à savoir la géophysique mathématique. De même, la météorologie, l'océanographie et la planétologie sont grandes consommatrices de mathématiques car elles nécessitent des modélisations.

Rapport entre les mathématiques et les sciences humaines

Son rapport avec les sciences humaines se fait essentiellement par les statistiques et les probabilités, mais aussi par des équations différentielles, stochastiques ou non, en économie et en finance (sociologie, psychologie, économie, finance, gestion...).

Notamment, les mathématiques financières sont une branche des mathématiques appliquées visant à la compréhension de l'évolution des marchés financiers et de l'estimation des risques. Cette branche des mathématiques se développe à la frontière des probabilités et de l'analyse et use des statistiques.

Utilisation non scientifique

La mathématisation ou l'appel à des méthodes mathématiques ne justifie en aucun cas l'authenticité scientifique. En effet, les postulats d'une « pensée » peuvent être extrêmement problématiques, voire farfelus, mais s'ils sont de nature à être quantifiés, ils peuvent donner lieu à des calculs complexes.

Les théories astrologiques occidentales se défendent de suivre des méthodes scientifiques. En particulier, l'astrologie statistique utilise les tests statistiques pour mettre en évidence d'éventuelles corrélations entre la position des astres et le devenir des hommes. Toutefois, ces études initiées par Choisnard et Gauquelin, menées à la marge de la recherche scientifique, n'ont en date de 2009 pas été productives et n'ont réussi à donner aucune preuve recevable d'un lien de cause à effet.

Dans l'essai polémique Impostures intellectuelles, Sokal et Bricmont dénoncent l'utilisation non fondée ou abusive d'une terminologie scientifique, en particulier mathématique et physique, dans le domaine des sciences humaines.

L'étude de systèmes complexes (évolution du chômage, capital d'une entreprise, évolution démographique d'une population...) fait appel à des connaissances mathématiques élémentaires. Le choix des critères de comptage, notamment dans le cas du chômage, est sujet à polémique.

Beaucoup plus subtil est le cas de l'économie mathématique. Le postulat fondamental de cette discipline est que l'activité économique peut se comprendre à partir d'un axiome de nature anthropologique, celui de l'acteur individuel rationnel. Dans cette vision, chaque individu cherche par ses actions à accroître un certain profit, et ce de façon rationnelle. Cette sorte de vision atomiste de l'économie permet à celle-ci de mathématiser relativement aisément sa réflexion, puisque le calcul individuel se transpose en calcul mathématique. Toutefois, certains sociologues, comme Bourdieu, et même certains économistes, refusent ce postulat de l'homo œconomicus, en remarquant que les motivations des individus comprennent non seulement le don, mais aussi dépendent d'autres enjeux dont l'intérêt financier n'est qu'une partie, ou tout simplement ne sont pas rationnelles. La mathématisation est donc selon eux un habillage permettant une valorisation scientifique de la matière.

Ceci dit, la modélisation mathématique en économie permet de percer à jour des mécanismes économiques qui n'auraient pu être découverts que très difficilement par une analyse « littéraire ». Par exemple, les explications des cycles économiques ne sont pas triviales. Sans modélisation mathématique, on peut difficilement aller au delà du simple constat statistique ou des spéculations non prouvées.

Mathématiques et philosophie

Article détaillé : Philosophie des mathématiques.

Les questions traditionnelles que se pose la philosophie au sujet des mathématiques peuvent se classer selon trois thèmes :

  1. La nature des objets mathématiques : s'ils existent par eux-mêmes, ou bien s'ils sont des constructions mentales ? Quelle est la nature d'une démonstration ? Quelles sont les liens entre la logique et les mathématiques ?
  2. L'origine de la connaissance mathématique : d'où vient la vérité des mathématiques, et de quelle nature est-elle ? Quelles sont les conditions pour que des mathématiques existent, et leur lien avec l'homme ? Quels sont les impacts de la structure de la pensée humaine sur la forme et le développement des mathématiques actuelles ? Les limites qu'elle induit?
  3. La relation des mathématiques avec la réalité : quelle relation les mathématiques abstraites entretiennent-elles avec le monde réel ? Quels sont les liens avec les autres sciences ?

Les mathématiques sont parfois surnommées « reine des sciences ». Cependant, l'expression remonte à Carl Friedrich Gauss : Regina Scientiarum[10] et le mot scientiarium signifie en réalité « des connaissances ».

Fondements

Article détaillé : Fondements des mathématiques.

Censément, les mathématiques utilisent la logique comme outil pour démontrer des vérités organisées en théories. Une première analyse laisse espérer qu'une utilisation puissante de cet outil tellement sûr, une réduction toujours plus poussée des bases, les axiomes, sur lesquelles s'échafaude l'édifice mathématique, finissent par mener à un corpus de faits incontestables. Plusieurs obstacles se dressent pourtant.

Aristote : le fondateur de la logique formelle (peinture par Raphaël).

D'une part, en tant qu'activité humaine, les mathématiques s'éloignent du modèle d'une construction suivant scrupuleusement les lois de la logique et indépendante du réel. Citons un fait et un phénomène pour illustrer ceci. Tout d'abord, les démonstrations que rédigent les mathématiciens ne sont pas formalisées au point de suivre en détail les lois de la logique, car cela est impossible en un temps raisonnablement court. Comme pour n'importe quelle science. l'acceptation de la véracité d'une démonstration, et donc d'un théorème, repose in fine sur un consensus de spécialistes au sujet de la validité de l'approximation de démonstration formelle proposée (La structure des révolutions scientifiques de Thomas Kuhn). L'avènement de l'informatique a cependant changé la donne, au moins marginalement, puisque celle-ci permet de formaliser et de vérifier des démonstrations de plus en plus complexes[11].

Cependant l'activité mathématique est loin de se réduire à la recherche de démonstrations et à la vérification de celles-ci. La confiance que la communauté mathématique place dans un de ses membres qui propose un résultat nouveau intervient dans la réception qu'aura ce résultat, et ce d'autant plus s'il est inattendu, ou modifie la façon de voir les choses. On peut prendre pour exemple historique les controverses sur les géométries non euclidiennes au XIXe siècle, durant lequel les travaux de Lobatchevsky ont été largement ignorés ; ou bien, dans un autre ordre d'idée, la difficulté de la réception des travaux du jeune républicain Galois au début du même siècle, notamment par Cauchy[12]. La sociologie des mathématiques étudie de tels phénomènes (voir sociologie des sciences).

D'autre part, la solidité même des bases ne peut reposer sur les seules mathématiques. En effet les théorèmes d'incomplétude, démontrés par Kurt Gödel dans la première moitié du XXe siècle, montrent que, contrairement à ce qu'espérait David Hilbert, il est impossible de réduire formellement les bases des mathématiques en un système dont la sûreté se démontre à partir de celles-ci, et ceci entraîne que certaines propriétés considérées « vraies » resteront inaccessibles à la démonstration, quels que soient les axiomes choisis.

Enseignement

Article détaillé : enseignement des mathématiques.

L'enseignement des mathématiques peut aussi bien désigner l'apprentissage des notions mathématiques fondamentales ou élémentaires que l'apprentissage et l'initiation à la recherche (enseignement supérieur des mathématiques). Suivant les époques et les lieux, les choix des matières enseignées et les méthodes d'enseignement changent (mathématiques modernes, méthode de Moore, éducation classique...). Dans certains pays, le choix des programmes scolaires dans l'éducation publique est fait par des institutions officielles.

Impact culturel

Expression artistique

Page couverture du Traité de l'harmonie réduite à ses principes naturels de Jean-Philippe Rameau.

Les notes qui sonnent bien ensemble à une oreille occidentale sont des sons dont les fréquences fondamentales de vibration sont dans des rapports simples. Par exemple, l'octave est un doublement de fréquence, la quinte une multiplication par 3/2.

Ce lien entre les fréquences et l'harmonie a été notamment détaillé dans le Traité de l'harmonie réduite à ses principes naturels de Jean-Philippe Rameau[13], compositeur baroque français et théoricien de la musique. Il repose en partie sur l'analyse des harmoniques (notées 2 à 15 dans la figure suivante) d'un son fondamental Do grave (noté 1), les premières harmoniques et leurs octaves sonnant bien entre elles.

Les harmoniques sur une portée.

Si la courbe tracée en rouge, qui suit les notes harmoniques, a une allure logarithmique, cela correspond au rapport entre deux phénomènes:

  • d'une part, la représentation de la hauteur d'un son par notre système auditif qui est proportionnelle au logarithme de la fréquence du son (une fréquence double correspond toujours à la même « distance sonore » appelée octave).
  • d'autre part, les fréquences harmoniques qui sont des multiples entiers de la fréquence fondamentale.
Fractale possédant une symétrie d'échelle et une symétrie centrale.

Les Occidentaux associent une certaine beauté aux figures symétriques. Une symétrie d'une figure géométrique est, intuitivement, l'existence d'un motif de la figure qui se répète suivant une règle précise, tout en étant partiellement transformé. Mathématiquement, une symétrie est l'existence d'une action non triviale d'un groupe, très souvent par isométrie, c'est-à-dire qui préserve les distances sur la figure. En d'autres termes, l'intuition de la règle est mathématiquement réalisée par le fait que c'est un groupe qui agit sur la figure, et le sentiment qu'une règle régit la symétrie est précisément dû à la structure algébrique de ce groupe.

Par exemple, le groupe lié à la symétrie miroir est l'ensemble \Z/2\Z =\{0,1\} . Un test de Rorschach est une figure invariante par cette symétrie, de même qu'un papillon et plus généralement le corps des animaux, du moins en surface. Lorsqu'on dessine la surface de la mer, l'ensemble des vagues possède une symétrie par translation : bouger notre regard de la longueur séparant deux crêtes de vagues ne change pas la vue que l'on a de la mer. Un autre cas de symétrie, cette fois non isométrique et presque toujours seulement approximative, est celui présenté par les fractales : un certain motif se répète à toutes les échelles de vision.

Vulgarisation

Article détaillé : Médiation scientifique.

La vulgarisation mathématique a pour objectif de présenter les mathématiques en un langage dénué de termes techniques. Comme l'objet d'études des mathématiques n'est pas réel, elle use souvent d'un vocabulaire imagé, et de comparaisons ou analogies non rigoureuses, pour faire sentir l'idée des développements mathématiques. Parmi les ouvrages qui se fixent ce but, citons Oh, les maths de Yakov Perelman et Le livre qui rend fou de Raymond Smullyan. Toutefois, les mathématiques font rarement l'objet de vulgarisation dans des journaux écrits ou télévisés.

Littérature et filmographie

Si nombre de biographies portent sur les mathématiciens, les mathématiques sont un thème certes peu exploité dans la littérature ou la filmographie, mais présent.

Romans

Films

Théatre

Pièces de théâtre
  • La Preuve de David Auburn, 2000 (Proof, Ed. Dramatist's Play Service, 2002)
Spécialistes de théâtre de sciences
  • Le Théâtre scientifique de Louis Figuier, Fabienne Cardot, Revue Romantisme, 1989
  • Théâtre et sciences, Le double fondateur, Jacques Baillon, L'Harmattan, 1998
  • La Recherche théâtrale dans un institut technologique et scientifique, Ouriel Zohar, dans Théâtre et Science, Ed. Prof. Lucile Garbagnati, F. Montaclair and D. Vingler, Presses du Centre Unesco de Besançon et du Théâtre de l' Université de Franche-Comté, Besançon, 1998.
  • Théâtre et matière, Les moteurs de représentation, Jacques Baillon, L'Harmattan, 2002
  • Le Théâtre de sciences, Michel Valmer, CNRS Éditions, 2006
  • Science on stage, from Dr Faustus to Copenhagen, Kirsten Sheperd-Barr, Princeton University Press, 2006.
  • Le Modèle scientifique dans le théâtre de Tom Stoppard, Liliane Campos, dans Epistémocritique, Revue d'études et de recherches sur la littérature et les savoirs, vol. II, 2008

Séries télévisées

  • Numb3rs, série de Nicolas Falacci et Cheryl Heuton.
  • Eureka, série télévisée créée par Andrew Cosby et Jaime Paglia.

Notes et références

  1. Eugene Wigner, 1960, "The Unreasonable Effectiveness of Mathematics in the Natural Sciences," Communications on Pure and Applied Mathematics 13(1): 1–14.
  2. (en) Oxford English Dictionary, article mathematic (accès restreint)
  3. The Oxford Dictionary of English Etymology, Oxford English Dictionary
  4. Colin, 1971 (à expliquer), cité à l'article mathématique du Trésor de la langue française
  5. Le Bâton d'Ishango, Institut royal des Sciences naturelles de Belgique
  6. Le Bâton d'Ishango, MathWorld
  7. Les os incisés d'Ishango font naître la numération en Afrique, Le Monde
  8. (en) Euclid's Elements (site interactif)
  9. (en) P=NP, Clay Mathematics Institute
  10. Mathematics - Crystalinks
  11. Voir le numéro spécial de décembre 2008 des Notices of the American Mathematical Society consacré à la démonstration formelle
  12. Nicolas Bouleau, Actes du Groupe canadien d'études en didactique des mathématiques, page 24
  13. Jean-Philippe Rameau, Traité de l'harmonie réduite à ses principes naturels, Paris, 1722, réédité en IBSN 2-86-563157-5 ou ISBN 2-05-100787-X

Voir aussi

Sur les autres projets Wikimedia :

Articles connexes

Liens externes

  • Portail des mathématiques Portail des mathématiques
  • Portail sur les sciences Portail sur les sciences

Ce document provient de « Math%C3%A9matiques ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Mathematiques de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • mathématiques — ● mathématiques nom féminin pluriel Science qui étudie par le moyen du raisonnement déductif les propriétés d êtres abstraits (nombres, figures géométriques, fonctions, espaces, etc.) ainsi que les relations qui s établissent entre eux. ●… …   Encyclopédie Universelle

  • mathématiques — MATHÉMATIQUES: Dessèchent le cœur …   Dictionnaire des idées reçues

  • Mathématiques — Les mathématiques constituent un domaine de connaissances abstraites construites à l aide de raisonnements logiques sur des concepts tels que les nombres, les figures, les structures et les transformations. Les mathématiques désignent aussi le… …   Wikipédia en Français

  • mathématiques — nfpl. MATÉMATIKE (Albanais) …   Dictionnaire Français-Savoyard

  • MATHÉMATIQUES , DE LA DIVERSITÉ À L’UNIFICATION — «Ce que nous appelons la réalité objective, c’est, en dernière analyse, ce qui est commun à plusieurs êtres pensants, et pourrait être commun à tous; cette partie commune [...], ce ne peut être que l’harmonie exprimée par des lois mathématiques.» …   Encyclopédie Universelle

  • MATHÉMATIQUES (FONDEMENTS DES) — Au sens premier et fort, le mot «fondement» désigne la base, jugée inébranlable, sur laquelle repose un corps d’énoncés, un système de connaissances, un complexe de croyances ou de conduites. «Reposer sur la base» signifie ici «trouver en elle à… …   Encyclopédie Universelle

  • Mathématiques en Mésopotamie — Mathématiques babyloniennes Photographie de la tablette YBC 7289 annotée. Les nombres écrits dans le système babylonien donnent la racine carrée de 2 avec quatre chiffres sexagésimaux significatifs, soit près de six chiffres décimaux : 1 +… …   Wikipédia en Français

  • Mathematiques arabes — Mathématiques arabes Dans l Histoire des mathématiques, on désigne par l expression de mathématiques arabes une des époques les plus importantes du développement de cette science. Il s agit des contributions apportées par les mathématiciens du… …   Wikipédia en Français

  • Mathematiques en Egypte antique — Mathématiques dans l Égypte antique Cet article fait partie de la série Sciences dans l Égypte antique Mathématiques Géométrie Unités de mesure Chiffres Fraction …   Wikipédia en Français

  • Mathématiques Arabes — Dans l Histoire des mathématiques, on désigne par l expression de mathématiques arabes une des époques les plus importantes du développement de cette science. Il s agit des contributions apportées par les mathématiciens du monde islamique, du… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”