Fractale

Fractale

On nomme figure fractale ou "fractale" par substantivation de l'adjectif (ou encore en anglais fractal), une courbe ou surface de forme irrégulière ou morcelée qui se crée en suivant des règles déterministes ou stochastiques impliquant une homothétie interne. Le terme « fractale » est un néologisme créé par Benoît Mandelbrot en 1974[1] à partir de la racine latine fractus, qui signifie brisé, irrégulier (fractales n.f). Dans la « théorie de la rugosité » développée par Mandelbrot, une fractale désigne des objets dont la structure est invariante par changement d’échelle.

Ce terme était au départ un adjectif : les objets fractals (selon un pluriel formé sur l'exemple de "chantiers navals"). Les fractales sont définies de manière paradoxale, en référence aux structures gigognes dont ils constituent des cas particuliers : « Les objets fractals peuvent être envisagés comme des structures gigognes en tout point –et pas seulement en un certain nombre de points, les attracteurs de la structure gigogne classique. Cette conception hologigogne (gigogne en tout point) des fractales implique cette définition tautologique : un objet fractal est un objet dont chaque élément est aussi un objet fractal »[2]. Malgré les apparences, ce type de définitions de nature récursive n'est pas seulement théorique mais peut concerner aussi des concepts usuels : un ancêtre est un parent ou un ancêtre d'un parent, un multiple est un composé d'un nombre ou d'un multiple de ce nombre, un escalier commence ou prolonge un escalier, une dynastie inaugure ou prolonge une dynastie, etc.

Un exemple de fractales.

Sommaire

Caractéristiques

Construction animée : courbe de von Koch

Un objet fractal possède au moins l'une des caractéristiques suivantes :

  • sa dimension de Hausdorff est strictement supérieure à sa dimension topologique. Cette caractéristique est généralement prise comme définition même d'un objet fractal. Pour exprimer la chose autrement, un réseau d'irrigation est un déploiement de lignes (« en 1D ») qui offre des caractéristiques commençant à évoquer une surface (« en 2D »). La surface du poumon (« en 2D ») est repliée en une sorte de volume (« en 3D »). De façon imagée, les fractales se caractérisent par une sorte de dimension non-entière.
  • il a des détails similaires à des échelles arbitrairement petites ou grandes ;
  • il est trop irrégulier pour être décrit efficacement en termes géométriques traditionnels ;
  • il est exactement ou statistiquement autosimilaire, c'est-à-dire que le tout est semblable à une de ses parties ;

Domaines de validité

Les figures fractales n'ont pas à satisfaire toutes les propriétés mentionnées ci-dessus pour servir de modèles. Il leur suffit de réaliser des approximations convenables de ce qui intéresse dans un domaine de validité donné (le livre fondateur de Mandelbrot Les Objets fractals en donne une grande variété d'exemples). La taille des alvéoles du poumon, par exemple, taille à partir de laquelle celui-ci cesse de se subdiviser de façon fractale, est liée à la taille du libre parcours moyen de la molécule d'oxygène à température du corps.

La dimension utilisée est celle de Hausdorff, et on observe qu'elle correspond à une caractéristique nouvelle des surfaces irrégulières. On connait les plages de validité des dimensions de Hausdorff observées sur Terre pour les montagnes, les nuages, etc.

Des exemples de figures fractales sont fournis par les ensembles de Julia et de Mandelbrot, la fractale de Lyapunov, l'ensemble de Cantor, le tapis de Sierpinski, le triangle de Sierpinski, la courbe de Peano ou le flocon de Koch. Les figures fractales peuvent être des fractales déterministes ou stochastiques. Elles apparaissent souvent dans l'étude des systèmes chaotiques.

Les figures fractales peuvent être réparties en trois grandes catégories :

  1. Les systèmes de fonctions itérées. Ceux-ci ont une règle de remplacement géométrique fixe (l'ensemble de Cantor, le tapis de Sierpinski, le triangle de Sierpinski, la courbe de Peano, le flocon de Koch) ;
  2. Les fractales définies par une relation de récurrence en chaque point dans un espace (tel que le plan complexe). Des exemples de ce type sont les ensembles de Mandelbrot et la fractale de Lyapunov ;
  3. Les fractales aléatoires, générées par des processus stochastiques et non déterministes, par exemple les paysages fractals.

De toutes ces figures fractales, seules celles construites par des systèmes de fonctions itérées affichent habituellement la propriété d'autosimilitude, signifiant que leur complexité est invariante par changement d'échelle.

Les fractales aléatoires sont les plus utilisées dans la pratique, et peuvent servir à décrire de nombreux objets extrêmement irréguliers du monde réel. Les exemples incluent des nuages, les montagnes, les turbulences de liquide, les lignes des côtes et les arbres. Les techniques fractales ont aussi été utilisées dans la compression fractale d'images, de même que dans beaucoup de disciplines scientifiques.

Dimension fractale

La dimension d'une ligne droite, d'un cercle et d'une courbe régulière est de 1. Une fois fixés une origine et un sens, chaque point de la courbe peut être déterminé par un nombre, qui définit la distance entre l'origine et le point. Le nombre est pris négativement s'il faut se déplacer dans le sens opposé à celui choisi au départ.

La dimension d'une figure simple dans le plan est de 2. Une fois un repère défini, chaque point de la figure peut être déterminé par deux nombres. La dimension d'un corps simple dans l'espace est de 3.

Une figure telle qu'une fractale n'est pas simple. Sa dimension n'est plus aussi facile à définir et n'est plus forcément entière. La dimension fractale, plus complexe, s'exprime à l'aide de la dimension de Hausdorff.

Article détaillé : Dimension fractale.

Quand la fractale est formée de répliques d'elle-même en plus petit, sa dimension fractale peut se calculer comme suit :

d = \frac{\ln(n)}{\ln(h)}

où la fractale de départ est formée de n exemplaires dont la taille a été réduite d'un facteur h (pour homothétie).

Quelques exemples :

  • Un côté du flocon de Koch est formé de n = 4 exemplaires de lui-même réduit d'un facteur h = 3. Sa dimension fractale vaut :

d= \frac{\ln(4)}{\ln(3)} \simeq 1,2618595\ldots

  • Le triangle de Sierpinski est formé de n = 3 exemplaires de lui-même réduit d'un facteur h = 2 . Sa dimension fractale vaut :

d= \frac{\ln(3)}{\ln(2)} \simeq 1,5849625\ldots

  • Le tapis de Sierpinski est formé de n = 8 exemplaires de lui-même réduit d'un facteur h = 3. Sa dimension fractale vaut :

d= \frac{\ln(8)}{\ln(3)} \simeq 1,892789\ldots

Une liste beaucoup plus longue se trouve sous : Liste de fractales par dimension de Hausdorff.

Objets fractals dans la nature

Le chou romanesco, un exemple de fractale naturelle
Une fougère fractale modélisée en utilisant un système de fonctions itérées.

Des formes fractales approximatives sont facilement observables dans la nature. Ces objets ont une structure autosimilaire sur une échelle étendue, mais finie : les nuages, les flocons de neige, les montagnes, les réseaux de rivières, le chou-fleur ou le brocoli, et les vaisseaux sanguins.

Les arbres et les fougères sont de nature fractale et peuvent être modélisés par ordinateur à l'aide d'algorithme récursif comme les L-Systems. La nature récursive est évidente dans ces exemples ; la branche d'un arbre ou la fronde d'une fougère sont des répliques miniatures de l'ensemble : pas identiques, mais de nature similaire.

La surface d'une montagne peut être modélisée sur ordinateur en utilisant une fractale : prenons un triangle dans un espace tridimensionnel dont nous connectons les milieux de chaque côté par des segments, il en résulte quatre triangles. Les points centraux sont ensuite déplacés aléatoirement vers le haut ou le bas, dans un rayon défini. La procédure est répétée, diminuant le rayon de moitié à chaque itération. La nature récursive de l'algorithme garantit que le tout est statistiquement similaire à chaque détail.

Enfin, certains astrophysiciens ont remarqué des similitudes dans la répartition de la matière dans l'Univers à six échelles différentes. Les effondrements successifs de nuages interstellaires, dus à la gravité, seraient à l'origine de cette structure (partiellement) fractale. Ce point de vue a donné naissance au modèle de l'univers fractal, décrivant un univers fondé sur les fractales.

Domaines d'application

Les domaines d'application des fractales sont très nombreux, on peut citer en particulier[3] :

Tous ces domaines - et bien d'autres - peuvent bénéficier de la description et d'une modélisation en termes fractals des phénomènes associés.

Galerie d'images

Informatique

  • Fractint est un ensemble logiciel libre, gratuit et open source destiné à tracer de nombreux types de fractales.
  • Sterling est un générateur de fractales gratuit pour Windows.
  • XaoS est un outil interactif francophone permettant une découverte à la fois technique et poétique des fractales.
  • Qosmic est un logiciel s'intéressant à l'édition de flammes fractales, les rendus sont générés de manière algorithmique.

Utilisations industrielles

Surface spécifique de Blaine : la finesse de broyage d'un ciment est exprimée en termes de surface spécifique (cm²/g) et mesurée par la méthode de Blaine, dite de perméabilité à l'air, utilisant la loi de Darcy, et la loi de Kozeny-Carman qui établit que la traversée d'un lit de granules par un fluide est affectée par la surface spécifique des granules. Ainsi, en calculant la durée que met un gaz sous pression à traverser un volume donné de granules, on en déduit la surface des granules. Plus le broyage est fin, plus la surface calculée est importante. Cette expérience se produisant dans un volume déterminé, on peut imaginer obtenir une surface développée infinie en broyant toujours plus finement le ciment. Il s'agit là d'une utilisation industrielle d'un modèle expliqué par les mathématiques fractales (un objet de dimension n de mesure finie, borné par une frontière de dimension n − 1, de mesure tendant vers l'infini).

Notes et références

  1. 50 ans après Einstein un savant élucide les mystères de l'univers, Sciences et vie n°936, septembre 1995, page 51.
  2. Le Trésor des Paradoxes, Philippe Boulanger & Alain Cohen, Éd. Belin, 2007.
  3. Le monde des fractales, Jacques Dubois & Jean Chaline

Annexes

Sur les autres projets Wikimedia :

Bibliographie

Articles connexes

Liens externes


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Fractale de Wikipédia en français (auteurs)

Игры ⚽ Нужно решить контрольную?

Regardez d'autres dictionnaires:

  • Fractale — Originaltitel フラクタル Transkription Furakutaru …   Deutsch Wikipedia

  • Fractale — Нэсса и Клейн フラクタル (Furakutaru) …   Википедия

  • fractale — ● fractale nom féminin Objet fractal. ● fractal, fractale, fractals adjectif (latin fractus, brisé) Se dit d objets mathématiques dont la création ou la forme ne trouve ses règles que dans l irrégularité ou la fragmentation ; se dit des branches… …   Encyclopédie Universelle

  • Fractale de Newton — z3 − 1 et les 3 bassins d attraction des racines du polynôme (en couleur) La fractale de Newton est un ensemble frontière défini dans le plan complexe caractérisé par l’application de la méthode de Newton à un polynôme …   Wikipédia en Français

  • Fractale De Lyapunov — Pour les articles homonymes, voir Lyapunov. Fractale de Lyapunov avec la séquence AB …   Wikipédia en Français

  • Fractale de lyapunov — Pour les articles homonymes, voir Lyapunov. Fractale de Lyapunov avec la séquence AB …   Wikipédia en Français

  • Fractale de Rauzy — La fractale de Rauzy (ou, au masculin, le fractal de Rauzy ) est une figure fractale associée à la substitution de Tribonacci : s(1) = 12, s(2) = 13, s(3) = 1. Cette étude a été réalisée en 1981 par Gérard Rauzy …   Wikipédia en Français

  • Fractale box — Fractale de Vicsek Fractale de Vicsek En mathématiques, la fractale de Vicsek, connue également sous le nom fractale box, résulte d une construction similaire à celle du tapis de Sierpinski. Le carré unité est décomposé en neuf sous carreaux sur… …   Wikipédia en Français

  • Fractale de Vicsek — En mathématiques, la fractale de Vicsek, connue également sous le nom fractale box, résulte d une construction similaire à celle du tapis de Sierpinski. Le carré unité est décomposé en neuf sous carreaux sur la grille régulière 3 par 3. Les… …   Wikipédia en Français

  • Fractale de Lyapunov — Pour les articles homonymes, voir Lyapunov. Fractale de Lyapunov avec la séquence AB …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”