Elements d'Euclide


Elements d'Euclide

Éléments d'Euclide

Page d'aide sur l'homonymie Pour les articles homonymes, voir Élément et Éléments pour la civilisation européenne.
Couverture de la première édition anglaise des Éléments par Henry Billingsley, 1570

Les Éléments (en grec ancien Στοιχεία / Stoikheía) sont un traité mathématique et géométrique, constitué de 13 livres organisés thématiquement, probablement écrit par le mathématicien grec Euclide vers 300 av. J.-C. Il comprend une collection de définitions, axiomes, théorèmes et leur démonstration sur les sujets de la géométrie euclidienne et de la théorie des nombres primitive.

Les Éléments sont le plus ancien exemple connu d'un traitement axiomatique et systématique de la géométrie et son influence sur le développement de la logique et de la science occidentale est fondamentale. Il s'agit probablement du recueil qui a rencontré le plus de succès au cours de l'Histoire : les Éléments furent l'un des premiers livres imprimés (Venise, 1482) et n'est précédé que par la Bible pour le nombre d'éditions publiées (largement plus de 1 000). Pendant des siècles, il a fait partie du cursus universitaire standard.

Sommaire

Principes

Une des plus anciennes versions connues des Éléments.

La méthode d'Euclide a consisté à baser ses travaux sur des définitions, des "demandes" (postulats) , des « notions ordinaires » (axiomes), et des propositions (problèmes résolus). Par exemple, le livre I contient 35 définitions (point, ligne, surface, etc.), cinq postulats et cinq notions ordinaires.

Postulats du livre I :

  1. Un segment de droite peut être tracé en joignant deux points quelconques.
  2. Un segment de droite peut être prolongé indéfiniment en une ligne droite.
  3. Etant donné un segment de droite quelconque, un cercle peut être tracé en prenant ce segment comme rayon et l'une de ses extrémités comme centre.
  4. Tous les angles droits sont congruents.
  5. Si deux lignes sont sécantes avec une troisième de telle façon que la somme des angles intérieurs d'un côté est inférieure à deux angles droits, alors ces deux lignes sont forcément sécantes de ce côté.

Notions ordinaires du livre I :

  1. Des choses qui sont égales à une même chose sont égales entre elles.
  2. Si des choses égales sont ajoutées à d'autres choses égales, leurs sommes sont égales.
  3. Si des choses égales sont soustraites à d'autres choses égales, les restes sont égaux.
  4. Des choses qui coïncident avec une autre sont égales entre elles.
  5. Le tout est plus grand que la partie.

Postérité

Le succès des Éléments est dû principalement à la présentation logique de la quasi-totalité du savoir mathématique dont Euclide disposait. L'utilisation systématique et efficace du développement des démonstrations à partir d'un jeu réduits d'axiomes incita à les utiliser comme livre de référence pendant des siècles.

Tout au long de l'Histoire, quelques controverses entourèrent les axiomes et les démonstrations d'Euclide. Néanmoins, les Éléments restent une œuvre fondamentale dans l'histoire des sciences et furent d'une influence considérable. Les scientifiques européens Nicolas Copernic, Johannes Kepler, Galileo Galilei et particulièrement Isaac Newton furent tous influencés par les Éléments et appliquèrent leur connaissance du livre à leur propre travaux. Certains mathématiciens (Bertrand Russell, Alfred North Whitehead) et philosophes (Baruch Spinoza) ont également tenté d'écrire leur propres Éléments, des structures déductives axiomatiques appliquées à leurs disciplines respectives.

Dans cinq postulats énoncés dans le livre I, le dernier, dont on déduit le postulat des parallèles : « en un point extérieur à une droite, ne passe qu'une unique droite qui lui est parallèle », a toujours semblé moins évident que les autres. Plusieurs mathématiciens soupçonnèrent qu'il pouvait être démontré à partir des autres postulats, mais toutes les tentatives pour ce faire échouèrent. Vers le milieu du XIXe siècle, il fut démontré qu'une telle démonstration n'existe pas, que le cinquième postulat est indépendant des quatre autres et qu'il est possible de construire des géométries non-euclidiennes cohérentes en prenant sa négation.

Histoire

Les premières traces écrites des notions de longueurs et d'orthogonalité sont babyloniennes et remontent à une période située entre 1900 et 1600 av. J.-C.[1]. On y trouve la connaissance du théorème de Pythagore au moins pour le cas d'un triangle dont les cotés sont de longueurs respectives trois, quatre et cinq.

La première formalisation est rassemblée dans un livre appelé Les Éléments. Il contient tout le savoir mathématique de l'époque. Bien que la plupart des théorèmes leur soient antérieurs, les Éléments étaient suffisamment complets et rigoureux pour éclipser les œuvres géométriques qui les ont précédés et peu de choses sont connues sur la géométrie pré-euclidienne.

Son auteur Euclide d'Alexandrie (325-265 av. J.-C.) est un mathématicien grec qui fut probablement un disciple d'Aristote (-384-322 av. J.-C.). Son histoire ainsi que celle de ce livre sont mal connues. Trois hypothèses sont avancées à son sujet. Euclide est:

  • soit un personnage historique principal auteur des Eléments,
  • soit à la tête d'une école mathématique
  • soit un nom d'auteur qu'a utilisé un groupe de mathématiciens pour rédiger une compilation, ce nom serait alors une référence au philosophe grec Euclide de Mégare (450-380 av. J.-C.) [2].

Si la première hypothèse a été admise sans l'ombre d'un doute pendant plus de 2000 ans, elle reste encore la plus vraisemblable. En revanche, il est pratiquement établi qu'Euclide était à la tête d'une école mathématique vigoureuse et ses disciples ont certainement contribué à la rédaction [3] des Eléments. Hippocrate de Chios (470-410 av. J.-C.) est l'auteur du contenu des livres I et II des éléments, si on en croit le philosophe byzantin Proclos (411-487). Il écrit de lui « Il était le premier à écrire pour la compilation maintenant connue sous le nom des Eléments » [4].

L'ouvrage fut traduit en arabe après avoir été donné aux Arabes par l'Empire byzantin, puis traduit en latin d'après les textes arabes (Adelard de Bath au XIIe siècle, repris par Campanus de Novare). La première édition imprimée date de 1482 et le livre fut depuis traduit dans une multitude de langues et publié dans plus de 1 000 éditions différentes. Des copies du texte grec existent toujours, par exemple dans la bibliothèque du Vatican ou à la Bodleian Library à Oxford, mais ces manuscrits sont de qualité variable et toujours incomplets. Par analyse des traductions et des originaux, il a été possible d'émettre des hypothèses sur le contenu originel, dont il ne subsiste aucune copie intégrale.

Axiomatisation ultérieure

Les mathématiciens du XIXe siècle découvrirent que les démonstrations d'Euclide nécessitent des hypothèses additionnelles, non spécifiées dans le texte original. David Hilbert modifia la liste pour en fournir un jeu complet en 1899 dans un article intitulé Les fondements de la géométrie. La liste des axiomes de Hilbert en contient 20.

Livres

Les Éléments sont organisés comme suit :

Il existe deux livres apocryphes, présents en annexe dans la traduction de Heath.

Références

  1. la tablette 322 de la collection de G A Plimpton conservée à l'université de Columbia.
  2. J Itard, Les livres arithmétique d'Euclide (Paris, 1962)
  3. Biographie d'Euclide dans Dictionary of Scientific Biography (New York 1970-1990)
  4. T L Heath, A History of Greek Mathematics I (Oxford, 1921), 182-202

Voir aussi

Articles connexes

Liens externes

Commons-logo.svg

Bibliographie

  • Les Éléments d'Euclide, traduction François Peyrard, éd. Blanchard Paris, 1993 (1re éd. 1819)
  • Euclide, Les Éléments, traduction, commentaires et notes de Bernard Vitrac [détail des éditions]
Éléments d'Euclide
Livre I ~ Livre II ~ Livre III ~ Livre IV ~ Livre V ~ Livre VI
Livre VII ~ Livre VIII ~ Livre IX ~ Livre X ~ Livre XI ~ Livre XII ~ Livre XIII
  • Portail des mathématiques Portail des mathématiques

Ce document provient de « %C3%89l%C3%A9ments d%27Euclide ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Elements d'Euclide de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Eléments d'Euclide — Éléments d Euclide Pour les articles homonymes, voir Élément et Éléments pour la civilisation européenne …   Wikipédia en Français

  • Éléments d'Euclide — Pour les articles homonymes, voir Élément. Couverture de la …   Wikipédia en Français

  • Livre X des Éléments d'Euclide — Le livre X des Éléments d Euclide est le plus volumineux des treize livres constituant les Éléments. Il a pour objet une classification des grandeurs irrationnelles en fonction de la complexité avec laquelle elles ont été formées. Les opérations… …   Wikipédia en Français

  • Livre I des Éléments d'Euclide — Le livre I des Éléments d Euclide pose les fondements pour la suite de l ouvrage. Il contient : 35 définitions de vocabulaire 5 demandes (ou postulats selon Proclos) plus un apocryphe 5 notions communes (ou axiomes selon Proclos) plus quatre …   Wikipédia en Français

  • Livre V des Éléments d'Euclide — Le livre V des Éléments d Euclide est attribué à Eudoxe de Cnide. Il est remarquable par son abstraction et la puissance des outils qu il développe. Il permet de traiter les rapports de quantités irrationnelles, en se ramenant à des comparaisons… …   Wikipédia en Français

  • Livre II des Éléments d'Euclide — Le Livre II des Éléments d Euclide contient ce qu on appelle habituellement et à tort l algèbre géométrique. En effet, une grande partie de ses propositions peuvent s interpréter algébriquement, ce que n ont pas manqué de faire les mathématiciens …   Wikipédia en Français

  • Livre VII des Éléments d'Euclide — Le Livre VII des Éléments d Euclide est le premier des livres d Euclide à traiter à proprement parler d arithmétique. On y définit en particulier les nombres premiers et les nombres premiers entre eux, le PGCD et le PPCM. Il comporte : 25… …   Wikipédia en Français

  • Livre II Des Éléments D'Euclide — Le Livre II des Éléments d Euclide contient ce qu on appelle habituellement et à tort l algèbre géométrique. En effet, une grande partie de ses propositions peuvent s interpréter algébriquement, ce que n ont pas manqué de faire les mathématiciens …   Wikipédia en Français

  • Livre II des Elements d'Euclide — Livre II des Éléments d Euclide Le Livre II des Éléments d Euclide contient ce qu on appelle habituellement et à tort l algèbre géométrique. En effet, une grande partie de ses propositions peuvent s interpréter algébriquement, ce que n ont pas… …   Wikipédia en Français

  • Livre ii des éléments d'euclide — Le Livre II des Éléments d Euclide contient ce qu on appelle habituellement et à tort l algèbre géométrique. En effet, une grande partie de ses propositions peuvent s interpréter algébriquement, ce que n ont pas manqué de faire les mathématiciens …   Wikipédia en Français


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.