Suite récurrente linéaire d'ordre 1

Suite récurrente linéaire d'ordre 1

Suite récurrente linéaire

En mathématiques, on appelle suite récurrente linéaire d’ordre p, toute suite à valeurs dans un corps K (généralement \mathbb C ou \R) définie pour tout  n \geq n_0 par la relation de récurrence suivante :

a0, a1, …ap − 1 étant p scalaires fixés de K (a0 non nul), pour tout  n \geq n_0, on a

u_{n+p} = a_0u_n + a_1u_{n+1} + \cdots + a_{p-1}u_{n+p-1}

Une telle suite est entièrement déterminée par la donnée des p premiers termes de la suite et par la relation de récurrence.

Les suites récurrentes linéaires d’ordre 1 s’appellent plus simplement des suites géométriques de raison a0. Concernant les suites récurrentes linéaires d'ordre 2, notons qu'on peut exprimer leur terme général sans avoir recours à la récurrence, plus précisément en utilisant seulement les deux premiers termes, quelques valeurs constantes, quelques opérations élémentaires de l'arithmétique (addition, soustraction, multiplication, exponentielle) et les fonctions sinus et cosinus. Une des suites de ce type est la très célèbre suite de Fibonacci qui peut s'exprimer à partir de puissances faisant intervenir le nombre d'or. L’étude des suites récurrentes linéaires d’ordre p fait appel à la notion d’espace vectoriel et au calcul matriciel.

Sommaire

Suite récurrente linéaire d’ordre 1

Si la relation de récurrence est u_{n+1}=q\,u_{n}, le terme général est u_n = u_{n_0}q^{n-n_0}

Suite récurrente linéaire d’ordre 2

a et b étant deux scalaires fixés de K avec b non nul, la relation de récurrence est

un + 2 = aun + 1 + bun (R)

On va prouver que le terme général d'une telle suite est

  •  \lambda r_1^n+ \mu r_2^n si r1 et r2 sont deux racines distinctes du polynôme X2aXb
  •  (\lambda + \mu n) r_0^n si r0 est racine double du polynôme X2aXb
  • (\lambda\cos(n\theta) + \mu\sin(n\theta))\rho^n\, pour une suite réelle quand ρeiθ et ρe iθ sont les deux racines complexes du polynôme X2aXb

On ne perd rien à la généralité de la suite en supposant que celle-ci est définie sur tout \mathbb N et pas seulement à partir de n0. En effet, si une suite (u) n’est définie qu’à partir de n0, elle induit la création d’une suite (v) définie sur \mathbb N en posant v_n = u_{n + n_0}.

L’idée est alors de rechercher des suites géométriques vérifiant la récurrence (R). C’est-à-dire chercher des scalaires r tels que la suite (r^n)_{n \in \mathbb N} vérifie (R). On démontre aisément que ce problème équivaut à résoudre l’équation du second degré r^2- ar - b = 0\,. Le polynôme r^2- ar - b \, est alors appelé le polynôme caractéristique de la suite. Son discriminant est \Delta = a^2 + 4b\,. Il faudra alors distinguer plusieurs cas, selon que le nombre de racines du polynôme caractéristique.

Si le polynôme possède deux racines distinctes

Soient r1 et r2 les deux racines distinctes. Les suites (r_1^n)_{n \in \mathbb N} et (r_2^n)_{n \in \mathbb N} vérifient (R) ainsi que toute suite dont le terme général serait \lambda r_1^n + \mu r_2^n (cela tient au caractère linéaire de la récurrence). A-t-on alors trouvé toutes les suites vérifiant (R) ? Une suite vérifiant (R) étant entièrement déterminée par la donnée de u0 et u1, il suffit de prouver que l’on peut toujours trouver λ et μ solutions du système


\begin{cases}
\lambda + \mu = u_0 \\
\lambda r_1 + \mu r_2 = u_1
\end{cases}

Or ce système a pour déterminant r2r1 non nul. Il est donc toujours possible d’exprimer une suite vérifiant (R) comme combinaison linéaire des suites (r_1^n)_{n \in \mathbb N} et (r_2^n)_{n \in \mathbb N}

Cette situation se produit pour toute suite à valeurs réelles pour laquelle le discriminant \Delta = a^2 + 4b\, est strictement positif, ou pour toute suite à valeurs complexes pour laquelle le discriminant est non nul.

Si le polynôme possède une racine double

Si le discriminant est nul, le problème est tout autre car on ne trouve qu’une seule valeur r0, donc une seule famille de suites géométriques (\lambda r_0^n)_{n \in \mathbb N} vérifiant (R) . L’idée consiste alors à rechercher les suites (\lambda_n)_{n \in \mathbb N} telles que, pour tout entier n, u_n = \lambda_n r_0^n avec (u_n)_{n \in \mathbb N} vérifiant (R). Cette méthode s’appelle la méthode de variation de la constante. On s’assure d’abord de l’existence de la suite (\lambda_n)_{n \in \mathbb N} en vérifiant que r0 n’est jamais nul . La relation de récurrence sur (u_n)_{n \in \mathbb N} se traduit par une relation de récurrence sur (\lambda_n)_{n \in \mathbb N} :

 r_0^2\lambda_{n+2} =ar_0\lambda_{n+1} + b\lambda_n

En utilisant ensuite le fait que a2 + 4b = 0 et que r_0 = \dfrac{a}{2}, on obtient la relation caractéristique de toute suite arithmétique :

λn + 2 − λn + 1 = λn + 1 − λn

La suite (\lambda_n)_{n \in \mathbb N} est donc une suite arithmétique de terme général

λn = λ + μn.

Les suites (u_n)_{n \in \mathbb N} vérifiant (R) ont alors pour terme général :

u_n =(\lambda + \mu n)r_0^n.

Ce résultat s'applique pour des suites à valeurs réelles ou complexes pour lesquelles le discriminant du polynôme caractéristique est nul.

Si le polynôme ne possède pas de racine réelle

C'est le cas pour les suites à valeurs réelles pour lesquelles le discriminant du polynôme caractéristique est strictement négatif. L’équation du second degré possède alors dans \mathbb C deux racines conjuguées.

 r_1= \rho e^{i\theta}\, et  r_2= \rho e^{-i\theta}\,.

Les suites de terme général  A\rho^n e^{in\theta} + B\rho^n e^{-in\theta}\, sont des suites complexes vérifiant (R). Parmi celles-ci, celles pour lesquelles A et B sont conjugués, sont des suites réelles . Donc les suites de terme général

 u_n = (\lambda \cos(n\theta) + \mu \sin(n\theta))\rho^n \,

sont des suites réelles vérifiant (R) (on a pris A = λ / 2 − iμ / 2). A-t-on alors trouvé toutes les suites vérifiant (R) ? Une suite vérifiant (R) étant entièrement déterminée par la donnée de u0 et u1, il suffit de prouver que l’on peut toujours trouver λ et μ solutions du système


\begin{cases}
\lambda  = u_0 \\
\lambda \rho \cos(\theta)+ \mu \rho \sin(\theta) = u_1
\end{cases}

Or ce système a pour déterminant ρsin(θ) non nul. Il est donc toujours possible d’exprimer une suite vérifiant (R) comme combinaison linéaire des suites (\rho^n\cos(n\theta))_{n \in \mathbb N} et (\rho^n\sin(n\theta))_{n \in \mathbb N}.

Suite récurrente d’ordre p

Sous-espace vectoriel de dimension p

Si on appelle (Rp) la relation de récurrence :

pour tout entier n,  u_{n+p} = a_0u_n + a_1u_{n+1} + \cdots + a_{p-1}u_{n+p-1}

et si on appelle  E_{R_p}, l’ensemble des suites à valeurs dans K et vérifiant (Rp), on démontre que  E_{R_p} est un sous-espace vectoriel de l’ensemble des suites à valeurs dans K. Cela tient à la linéarité de la relation de récurrence.

De plus, ce sous espace vectoriel est de dimension p. En effet, il existe un isomorphisme d’espace vectoriel entre  E_{R_p} et l’ensemble K^p\, : à chaque suite (u) de  E_{R_p}, on associe le p_uplet (u_0, u_1, \cdots,u_{p-1}). Il suffit alors de connaître une famille libre de p suites vérifiant (Rp), l’ensemble  E_{R_p} est alors engendré par cette famille libre.

Terme général

La recherche du terme général et des suites particulières s’effectue en travaillant sur Kp . À chaque suite (u_n)_{n \in \mathbb N} on associe la suite (U_n)_{n \in \mathbb N} telle que

U_n = (u_n, u_{n + 1},\cdots, u_{n+p-1})

La relation de récurrence sur (u_n)_{n \in \mathbb N} induit une relation de récurrence sur (U_n)_{n \in \mathbb N}

Un + 1 = AUn
 A =
\begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \cdots & \vdots \\
0 & \cdots & \cdots & 0 & 1 \\
a_0 & a_1 & \cdots & \cdots & a_{p-1}
\end{pmatrix}

Le terme général de la suite U est alors déterminé par

Un = AnU0

Le problème semble alors terminé. Mais la réelle difficulté consiste alors à calculer An... On préfère plutôt déterminer une base de  E_{R_p}.

Recherche d'une base

Le polynôme caractéristique de la matrice A est P(X) = X^p - \sum_{i = 0}^{p-1}a_iX^i. Ce n'est pas un hasard si on le retrouve pour caractériser les suites u = (u_n)_{n \in \mathbb N} vérifiant Rp.

On note f la transformation linéaire qui, à une suite u = (u_n)_{n \in \mathbb N} associe la suite v = (v_n)_{n \in \mathbb N} définie par vn = un + 1. La condition u vérifie Rp se traduit alors par P(f)(u) = 0. L'ensemble E_{R_p} est donc le noyau de P(f). Si P est un polynôme scindé dans K (ce qui est toujours vrai si K = \mathbb C), il existe k racines  r_1, r_2, \cdots, r_k et k exposants  \alpha_1, \alpha_2, \cdots, \alpha_k tel que P = \prod_{i=1}^k(X - r_i)^{\alpha_i}. Le noyau de P(f) est alors la somme directe des noyaux des (f - r_iId)^{\alpha_i}. Il suffit donc de trouver une base de chacun de ces noyaux pour déterminer une base de E_{R_p} .

On peut montrer que toute suite de terme général Q(n)r_i^n est élément du noyau de (f - r_iId)^{\alpha_i} pour peu que le degré de Q soit inférieur strictement à αi. Cette démonstration se fait par récurrence sur αi. Comme les suites (n^jr_i^n)_{n \in \mathbb N}, pour j = 0 à αi − 1 forment une partie libre de αi éléments, la famille de toutes les suites (n^jr_i^n)_{n \in \mathbb N}, pour j = 0 à αi − 1 et pour i = 1 à k forme une famille libre de \alpha_1 + \alpha_2 + \cdots + \alpha_k = p éléments de E_{R_p} (de dimension p) donc une base de E_{R_p} . Les éléments de E_{R_p} sont donc des sommes de suites dont le terme général est Q(n)r_i^n avec degré de Q strictement inférieur à αi.

Retour à la récurrence d'ordre 2

Si le polynôme caractéristique se scinde en (Xr1)(Xr2) alors les polynômes Q sont de degré 0 et les éléments de E_{R_2} sont des suites dont le terme général est \lambda_1r_1^n + \lambda_2r_2^n.

Si le polynôme caractéristique se scinde en (Xr0)2 alors les polynômes Q sont de degré 1 et les éléments de E_{R_2} sont des suites dont le terme général est (\lambda_1n +\lambda_2)r_0^n.

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Suite r%C3%A9currente lin%C3%A9aire ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Suite récurrente linéaire d'ordre 1 de Wikipédia en français (auteurs)


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»