Fonction Mesurable


Fonction Mesurable

Fonction mesurable

Soient E et F des espaces mesurables munis respectivement d'une tribu \mathfrak{E} et  \mathfrak{F} .

Une fonction f de E dans F sera dite fonction mesurable de  (E,\mathfrak{E}) dans  (F,\mathfrak{F}) si l'image réciproque de la tribu  \mathfrak{F} est une sous-tribu de  \mathfrak{E} .

Applications à valeurs réelles

Si F est l'ensemble des réels et si  \mathfrak{F} est la tribu borélienne, on dira simplement que f est une fonction mesurable sur  (E,\mathfrak{E}) .

Il suffit alors de vérifier que l'image réciproque de tout ouvert est dans  \mathfrak{E} .

Propriétés de passage à la limite pour les fonctions positives

Soit E un espace mesurable et (f_n) \; une suite de fonctions mesurable de E dans \mathbb{R}_+ alors la fonction f \; définie par f = \sup_n f_n l'est également.

Démonstration: on considère pour cela l'image réciproque de ]a,+\infty[ _;, que l'on peut écrire

\bigcup_{n\in \mathbb{N}} \{x\in X, f_n(x)>a\}

on obtient une réunion dénombrable d'éléments de  \mathfrak{E} donc un ensemble mesurable.

Par passage au complémentaire, on conclut que l'image réciproque de [0,a] est aussi mesurable. Les intervalles de la forme [0,a[ sont réunion dénombrable des ensembles précédents et donc sont mesurable. Il en est de même pour les intervalles de la forme ]a,b[ obtenus par intersection. Or cette famille engendre la tribu. CQFD

Si les fonctions fn de X dans \mathbb{R}_+ sont toutes mesurables, la fonction inf fn l'est également, ainsi que les fonctions liminf fn, limsup fn.

En particulier, si la limite existe elle est mesurable.

Les démonstrations sont du même type.

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Fonction mesurable ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Fonction Mesurable de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Fonction mesurable — Soient E et F des espaces mesurables munis de leurs tribus respectives et . Une fonction f de E dans F sera dite fonction mesurable de dans si la …   Wikipédia en Français

  • Fonction etagee — Fonction étagée En mathématiques, une fonction étagée est une fonction mesurable dont l image est finie. De façon équivalente, c est une fonction simple mesurable. Ces fonctions jouent un rôle important en théorie de l intégration au sens de… …   Wikipédia en Français

  • Fonction Étagée — En mathématiques, une fonction étagée est une fonction mesurable dont l image est finie. De façon équivalente, c est une fonction simple mesurable. Ces fonctions jouent un rôle important en théorie de l intégration au sens de Lebesgue. Il s agit… …   Wikipédia en Français

  • Fonction De Répartition — Fonctions de répartition d une variable discrète, d une variable diffuse et d une variable avec atome, mais non discrète. En théorie des probabilités ou en statistiques, la fonction de répartition d une variable aléatoire réelle caractérise la lo …   Wikipédia en Français

  • Fonction de repartition — Fonction de répartition Fonctions de répartition d une variable discrète, d une variable diffuse et d une variable avec atome, mais non discrète. En théorie des probabilités ou en statistiques, la fonction de répartition d une variable aléatoire… …   Wikipédia en Français

  • Fonction étagée — En mathématiques et en analyse : Une fonction simple est une fonction numérique dont l image est constituée d’un nombre fini de valeurs réelles (ou éventuellement complexes). Une fonction étagée est une fonction simple définie sur un espace… …   Wikipédia en Français

  • Fonction caractéristique (théorie des ensembles) — Cet article concerne les fonctions caractéristiques en théorie des ensembles. Pour les articles homonymes, voir Fonction caractéristique. Pour les fonctions indicatrices en analyse convexe, voir Fonction indicatrice (analyse convexe) …   Wikipédia en Français

  • Fonction de répartition — Fonctions de répartition d une variable discrète, d une variable diffuse et d une variable avec atome, mais non discrète. En théorie des probabilités ou en statistiques, la fonction de répartition d une variable aléatoire réelle caractérise la… …   Wikipédia en Français

  • Fonction absolument continue — Absolue continuité En mathématiques, on introduit les notions de fonction absolument continue et de mesure absolument continue. Ces deux concepts entretiennent des rapports. Sommaire 1 Fonction absolument continue 1.1 Motivation 1.2 Définition …   Wikipédia en Français

  • Fonction Delta — Distribution de Dirac La distribution de Dirac, aussi appelée par abus de langage fonction δ de Dirac, introduite par Paul Dirac, peut être informellement considérée comme une fonction δ qui prend une « valeur » infinie en 0, et la… …   Wikipédia en Français