Deuxième quantification des champs

Deuxième quantification des champs

Seconde quantification

La seconde quantification, aussi appelée quantification canonique, est une méthode de quantification des champs introduite par Dirac en 1927 pour l'électrodynamique quantique. Elle consiste à partir d'un champ classique tel que le champ électromagnétique, à le considérer comme un système physique et à remplacer les grandeurs classiques (E, B) décrivant l'état du champ par un état quantique et des observables de la physique quantique. On aboutit naturellement à la conclusion que l'énergie du champ est quantifiée, chaque quantum représentant une particule.

La seconde quantification a été baptisée ainsi par Fock et Jordan en 1932. En 1949, Pauli dira à Klein : «La seconde quantification, c'est le péché au carré.»

Sommaire

Exemple du champ scalaire réel

Pour simplifier les notations, on s'intéresse dans un premier temps à un champ scalaire réel. On pourrait par exemple penser au champ de pression P(r,t) dans un gaz, mais ce champ n'est pas fondamental, puisqu'il suppose l'existence d'autres particules et ne peut exister dans le vide. Le seul champ étudié en physique classique qui puisse se propager dans le vide est le champ électromagnétique, lequel est un champ tensoriel. On peut cependant construire un champ scalaire se propageant dans le vide en considérant la fonction d'onde d'une particule relativiste comme un champ.

Première quantification

L'équation relativiste donnant l'énergie E de la particule de masse m et de charge électrique nulle en fonction de sa quantité de mouvement \vec{p} s'écrit :

E^2 \ = \ p^2 \, c^2 \ + \ m^2 \, c^4

En appliquant une première fois les règles de la quantification canonique issues de la mécanique quantique, on obtient l'équation de Klein-Gordon pour la fonction d'onde \Phi(\vec{r},t) :

- \ \hbar^2 \ \frac{{\partial}^2\Phi(\vec{r},t)}{{\partial}t^2} \ = \ - \ \hbar^2 \, c^2 \ \Delta \ \Phi(\vec{r},t) \ + \ m^2 \, c^4 \ \Phi(\vec{r},t)

Cette équation se réécrit sous la forme suivante :

 \left( \ \Box \  + \ \frac{m^2 \, c^4}{\hbar^2} \ \right) \ \Phi(\vec{r},t) \ = \ 0

 \Box représente l'opérateur d'Alembertien :

 \Box \ = \ \frac{1}{c^2} \ \frac{{\partial}^2 ~~}{{\partial}t^2} \ - \ \Delta.

Si l'on a considéré jusqu'à présent que Φ était la fonction d'onde de la particule, on peut également la considérer comme un champ scalaire réel se propageant dans le vide, l'équation de Klein-Gordon étant son équation de propagation.

Développement de Fourier

Supposons pour simplifier que la particule soit confinée dans une grande boîte de volume V fini. Le champ scalaire \Phi(\vec{r},t) admet alors un développement en série de Fourier[1]. Notons :

  • ω la variable conjuguée au temps t : ω est la pulsation.
  • \vec{k} le vecteur conjugué à la position \vec{r} : \vec{k} est le vecteur d'onde.

Les modes propres sont les exponentielles :

f(\vec{r},t) \ = \ f_0 \ e^{- \, i \, \omega t \, + \, i \, \vec{k} \cdot \vec{r}}

qui vérifient l'équation de Klein-Gordon :

 \left( \ \Box \ + \ \frac{m^2 \, c^2}{\hbar^2} \ \right) \,  f(\vec{r},t) \ = \ 0 \quad \Longrightarrow \quad \left( \ - \ \frac{\omega^2}{c^2} \, + \, k^2 \, + \, \frac{m^2 \, c^2}{\hbar^2} \ \right) \, f(\vec{r},t) \ = \ 0

On doit donc avoir la relation de dispersion :

\frac{\omega^2}{c^2} \ = \ k^2 \, + \, \frac{m^2 \, c^2}{\hbar^2}

Donc, si l'on se donne un vecteur d'onde \vec{k}, il lui correspond deux modes propres de pulsations respectives :

\omega_{\pm} \ = \ \pm \ \sqrt{\ c^2 \, k^2 \, + \, \frac{m^2 \, c^4}{\hbar^2} \ }

Le développement en série de Fourier du champ scalaire \Phi(\vec{r},t) peut donc s'écrire comme une somme sur tous les vecteurs d'ondes possibles[2] :

\Phi \left( \overrightarrow{r},t\right) =\sum_{\overrightarrow{k}}\left[
A_{+}e^{-i\omega _{+}t}+A_{-}e^{-i\omega _{-}t}\right] e^{i\overrightarrow{k}
.\overrightarrow{r}}+c.c.

cc désigne le complexe conjugué.

Seconde quantification

La procédure de seconde quantification consiste à remplacer les coefficients complexes des modes de Fourier du développement du champ scalaire par des opérateurs abstraits :




Ces opérateurs obéissent par définition à la règle de commutation canonique :

 \left[ \  \hat{a}_{\vec{k'}}, \ \hat{a}_{\vec{k}}^{\dagger} \ \right] \ = \ \delta_{\vec{k}, \vec{k}'} \ \hat{1}

Le champ scalaire de spin zéro est donc un champ bosonique.

Notes et références

  1. Si le volume V de la boîte est infini, il faut utiliser la transformée de Fourier à la place de la série de Fourier.
  2. Il faut imposer une condition aux limites sur la frontière  \partial V du volume fini V. C'est cette condition aux limites qui va provoquer la discrétisation des vecteurs d'ondes possibles. Si on prend par exemple des conditions aux limites périodiques pour un volume parallélépipédique : V = LxLyLz, cette quantification s'écrira explicitement : k_i \ = \ \frac{2 \, \pi \, n_i}{L_i} où les entiers n_i \ \in \ \mathbb{Z}.

Voir aussi

Bibliographie

  • Lev Landau et Evguéni Lifchitz, Physique théorique, tome 3 : Mécanique quantique, éd. MIR, Moscou [détail des éditions]
  • Lev Landau et Evguéni Lifchitz, Physique théorique, tome 4 : Électrodynamique quantique, éd. MIR, Moscou [détail des éditions]
  • Albert Messiah, Mécanique quantique [détail des éditions], tome 2.
  • L. I. Schiff, Quantum mechanics (John Wiley & Sons)
  • Portail de la physique Portail de la physique
Ce document provient de « Seconde quantification ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Deuxième quantification des champs de Wikipédia en français (auteurs)

Игры ⚽ Нужно решить контрольную?

Regardez d'autres dictionnaires:

  • Deuxième quantification — Seconde quantification La seconde quantification, aussi appelée quantification canonique, est une méthode de quantification des champs introduite par Dirac en 1927 pour l électrodynamique quantique. Elle consiste à partir d un champ classique tel …   Wikipédia en Français

  • Théorie quantique des champs — ██████████20  …   Wikipédia en Français

  • Theorie quantique des champs — Théorie quantique des champs Cet article fait partie de la série Mécanique quantique Postulats de la mécanique quantique Hist …   Wikipédia en Français

  • Théorie des champs — Théorie quantique des champs Cet article fait partie de la série Mécanique quantique Postulats de la mécanique quantique Hist …   Wikipédia en Français

  • Champs quantiques relativistes — Théorie quantique des champs Cet article fait partie de la série Mécanique quantique Postulats de la mécanique quantique Hist …   Wikipédia en Français

  • Champs Holistique — Holism and Evolution Holism and Evolution est un livre de Jan Smuts, politicien sud africain et ancien premier ministre de l Afrique du Sud. Dans cet ouvrage, Smuts tente de définir le terme « holisme ». Les concepts qu il développera… …   Wikipédia en Français

  • Champs holistique — Holism and Evolution Holism and Evolution est un livre de Jan Smuts, politicien sud africain et ancien premier ministre de l Afrique du Sud. Dans cet ouvrage, Smuts tente de définir le terme « holisme ». Les concepts qu il développera… …   Wikipédia en Français

  • UNIFICATION DES FORCES — L’ambition des scientifiques a toujours été de décrire des phénomènes variés comme des manifestations diverses de processus fondamentaux en nombre restreint. En physique, cette démarche a été couronnée de spectaculaires succès; la reconnaissance… …   Encyclopédie Universelle

  • Équations des ondes électromagnétiques — Équations de Maxwell  Ne doit pas être confondu avec Relations de Maxwell. Les équations de Maxwell, aussi appelées équations de Maxwell Lorentz, sont des lois fondamentales de la physique. Elles constituent les postulats de base de l… …   Wikipédia en Français

  • Theorie des cordes — Théorie des cordes Les niveaux de grossissements : monde macroscopique, monde moléculaire, monde atomique, monde subatomique, monde des cordes. La théorie des cordes est l une des voies envisagées pour régler une des questions majeures de la …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”