Connexion (Mathématiques)


Connexion (Mathématiques)

Connexion (mathématiques)

Transport parallèle sur une sphère

En géométrie différentielle, la connexion est un outil pour réaliser le transport parallèle. La notion a été introduite par par Charles Ehresmann et Jean-Louis Koszul en 1951. Il existe plusieurs présentations qui dépendent de l'utilisation faite.

Sommaire

Connexion de Koszul

Article détaillé : Connexion de Koszul.

La connexion de Koszul est un opérateur sur des espaces de sections. Elle a été introduite en 1951 par Koszul pour les fibrés vectoriels, et utilisée par Nomizu en 1954[1].

Une connexion de Koszul est une association à toute section globale s d'un fibré vectoriel E de base B, et à tout champ vectoriel sur B, d'une section globale notée \nabla_Xs vérifiant :

  1. L'application X\mapsto \nabla_Xs soit C^{\infty}(M)-linéaire ; autrement dit, pour toute fonction régulière f, on a :
    \nabla_{f\cdot X}s=f\cdot\nabla_Xs.
  2. De plus, \nabla doit vérifier la relation de Leibniz :
    \nabla_{X}(f\cdot s)=df(X)\cdot s+f\cdot \nabla_X(s).

La relation de Leibniz démontre que la valeur de \nabla_Xs en un point b de B ne dépend que des variations de s au voisinage de b. La C^{\infty}(M)-linéarité implique que cette valeur ne dépend que de X(p).

Connexion d'Ehresmann

Article détaillé : Connexion d'Ehresmann.

Connexion de Levi-Civita

Article détaillé : Connexion de Levi-Civita.

Voir aussi

Notes et références

Notes

  1. Katsumi Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), pp. 33-65.

Références

  • (en) Marcel Berger, A Panoramic View of Riemannian Geometry [détail des éditions]
  • Sylvestre Gallot, Dominique Hulin, Jacques Lafontaine ; Riemannian Geometry [détail des éditions]
  • Portail de la géométrie Portail de la géométrie
Ce document provient de « Connexion (math%C3%A9matiques) ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Connexion (Mathématiques) de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Connexion (mathematiques) — Connexion (mathématiques) Transport parallèle sur une sphère En géométrie différentielle, la connexion est un outil pour réaliser le transport parallèle. La notion a été introduite par par Charles Ehresmann et Jean Louis Koszul en 1951. Il existe …   Wikipédia en Français

  • Connexion (mathématiques) — Transport parallèle sur une sphère En géométrie différentielle, la connexion est un outil pour réaliser le transport parallèle. Il existe plusieurs présentations qui dépendent de l utilisation faite. Cette notion a été développée au début des… …   Wikipédia en Français

  • Mathematiques de la relativite generale — Mathématiques de la relativité générale Les mathématiques de la relativité générale se réfèrent à différentes structures et techniques mathématiques utilisées par la théorie de la relativité générale d Albert Einstein. Les principaux outils… …   Wikipédia en Français

  • Mathématiques De La Relativité Générale — Les mathématiques de la relativité générale se réfèrent à différentes structures et techniques mathématiques utilisées par la théorie de la relativité générale d Albert Einstein. Les principaux outils utilisés dans cette théorie géométrique de la …   Wikipédia en Français

  • Connexion De Koszul — En géométrie différentielle, une connexion (de Koszul) est un opérateur sur les sections d un fibré vectoriel. Cette notion a été introduite par Koszul en 1950[réf. nécessaire] et formalise le transport parallèle de vecteurs le long d une… …   Wikipédia en Français

  • Connexion de koszul — En géométrie différentielle, une connexion (de Koszul) est un opérateur sur les sections d un fibré vectoriel. Cette notion a été introduite par Koszul en 1950[réf. nécessaire] et formalise le transport parallèle de vecteurs le long d une… …   Wikipédia en Français

  • Mathématiques de la relativité générale — Les mathématiques de la relativité générale se réfèrent à différentes structures et techniques mathématiques utilisées par la théorie de la relativité générale d Albert Einstein. Les principaux outils utilisés dans cette théorie géométrique de la …   Wikipédia en Français

  • Connexion affine — Une connexion affine sur la sphère fait rouler le plan affine tangent d un point à un autre. Dans ce déplacement, le point de contact trace une courbe du plan : le développement. En mathématiques, et plus précisément en géométrie… …   Wikipédia en Français

  • Connexion de Koszul — En géométrie différentielle, une connexion (de Koszul) est un opérateur sur les sections d un fibré vectoriel. Cette notion a été introduite par Koszul en 1950[réf. nécessaire] et formalise le transport parallèle de vecteurs le long d une… …   Wikipédia en Français

  • Connexion — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Sur les autres projets Wikimedia : « Connexion », sur le Wiktionnaire (dictionnaire universel) D une manière générale, une connexion est l… …   Wikipédia en Français