Composition des applications


Composition des applications

Composition de fonctions

En mathématiques, la composition de fonctions (ou composition d'applications) est un procédé qui consiste, à partir de deux fonctions, d'en construire une nouvelle. Pour cela on utilise les images de la première fonction comme arguments pour la seconde (à condition que cela ait un sens). On parle alors de fonction composée (ou d'application composée).

Sommaire

Définition formelle

Soient X, Y et Z trois ensembles quelconques. Soient deux fonctions f:X\to Y et g:Y \to Z. Si l'ensemble d'arrivée de f est inclus dans l'ensemble de départ de g (c'est-à-dire si f(X) \subset Y), on définit alors la composée de f par g, notée g \circ f par

\forall x \in X,\ (g\circ f)(x)=g[f(x)].

On applique ici f à l'argument x, puis on applique g au résultat.

On se retrouve donc avec une nouvelle fonction g \circ f: X \to Z.

La notation g \circ f se lit « g rond f », « f suivie de g » ou encore « g après f ». On note parfois g\circ f(x) pour (g \circ f)(x).

Exemple d'incompatibilité des domaines

Soient les deux fonctions :

 \begin{matrix} f:&\mathbb R & \rightarrow & \mathbb R_+ \\ & x & \mapsto & x^2 \end{matrix}

et

\begin{matrix} g: & \mathbb R_- & \rightarrow & \mathbb R_+ \\ & x & \mapsto & \sqrt{-x} \end{matrix}

Ici, le domaine d'arrivée de f est \R_+. Or le domaine de départ de g est \R_- (il n'existe pas de nombre réel tel que son carré soit strictement négatif). La fonction g\circ f n'a donc pas de sens ici (puisqu'elle n'est vérifiée que pour une seule valeur de x, 0).

Propriétés

Ici on ne se préoccupe pas des problèmes de compatibilité des domaines des fonctions considérées.

  • La composition de fonctions n'est généralement pas commutative :
f \circ g \ne g \circ f
 f \circ ( g \circ h ) = ( f \circ g ) \circ h
  • La composition de fonctions n'est généralement pas distributive (sur un opérateur quelconque \star) :
f \circ (g \star h) \ne (f \circ g) \star (f \circ h)
  • Si la fonction g est continue en x0 et la fonction f est continue en g(x0) alors  f \circ g est continue en x0.
  • Composition de deux fonctions f et g strictement monotones ( le sens de variation obéit à une sorte de règle des signes):
    • si f et g ont même sens de variation, leur composée est strictement croissante;
    • si f et g ont des sens de variation différents, leur composée est strictement décroissante.
  • Dérivée d'une composition de fonctions dérivables :
(f \circ g)' = (f'\circ g) \cdot g'
Voir l'article théorème de dérivation des fonctions composées.
 (g \circ f)^{-1} = f^{-1} \circ g^{-1}

Puissances fonctionnelles

On conserve les notations ci-dessus. Si Y \subset X alors f peut être composée avec elle-même; et la composée est notée f2. Ainsi

f^2=f \circ f
 f ^3= f \circ f \circ f

Et de manière plus générale:

 \forall n \in \N^*, f^n=\underbrace{f \circ \ldots \circ f}_{n\ \mathrm{fois}}

On pose

f^0=\operatorname{Id}_X

\operatorname{Id}_X est l'application identité de l'ensemble X.

Une extension de cette notation avec des exposants entiers négatifs peut être définie, à condition de supposer la fonction f bijective de X dans lui-même. Ainsi, f − 1 désigne l'application réciproque et pour tout entier n strictement négatif, fn, est la composée de f − 1 par elle-même n fois.

Attention à ne pas confondre cette notation avec la puissance d'une fonction pour la multiplication des applications. Par exemple sin2 est la fonction \sin \times \sin qui vérifie

\forall x \in \R,\ \sin^2(x) = \sin(x)\times \sin(x)

Il y a aussi une confusion possible entre l'inverse d'une fonction pour la multiplication et l'application réciproque.

Autre notation

Au milieu du XXe siècle, quelques mathématiciens trouvèrent que la notation g \circ f portait à confusion et décidèrent d'utiliser xf pour f(x) et xfg pour (g \circ f)(x). Ils ne furent pas suivis et cette notation ne se rencontre que dans certains vieux livres.

Voir aussi

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Composition de fonctions ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Composition des applications de Wikipédia en français (auteurs)