85-01-8

85-01-8

Phénanthrène

Phénanthrène
Structure du phénanthrène
Structure du phénanthrène
Général
No CAS 85-01-8
No EINECS 201-581-5
Apparence cristaux
Propriétés chimiques
Formule brute C14H10  [Isomères]
Masse molaire 178,2292 gmol-1
C 94,34 %, H 5,66 %,
178,23 g/mol (de 178,22 à 178,24 selon les auteurs)
Propriétés physiques
T° fusion 101 °C
T° ébullition 332 °C
ébullition : 340 °C [1], Merck (1989)[2], Prager (1995)[3]
Solubilité Soluble dans les solvants organiques. Peu soluble dans l'eau : 1,2 mg/L (à 25 °C) et 0,8 à 1,2 (à 25 °C) selon les auteurs Verschueren en 1996, Hansen en 1993 [4] cités par l'INERIS.
Masse volumique 1,18 g/cm³ (25 °C) ;
Densité de vapeur,
par rapport à l'air : 6,15
Pression de vapeur saturante 12 mPa ou 0,091Pa [5],[6] (20 °C)
Précautions
Directive 67/548/EEC
Dangereux pour l`environnement
N
Phrases R : 50/53,
Phrases S : 24/25, 61,
NFPA 704

Symbole NFPA 704

SIMDUT[8]
Produit non contrôlé
Classification du CIRC
Groupe 3 : Inclassable quant à sa cancérogénicité pour l'Homme[7]
Unités du SI & CNTP, sauf indication contraire.

Le phénanthrène (provenant de phényl et anthracène) est un hydrocarbure aromatique polycyclique (HAP) composé de trois anneaux (noyaux ou cycles) de benzène (C'est un HAP dit tricyclique). Ces anneaux sont fusionnés et de formule C14 H10.
Il a cinq structures de résonance.

C'est un composé organique (toxique) qui fait partie des polluants organiques persistants (POPs). On le trouve dans l'environnement surtout dans les sols et les sédiments, et il est essentiellement produit avec les goudrons, par une mauvaise combustion des hydrocarbures ou du bois (inserts, foyers fermés faiblement alimentés en air). Il n'est pas considéré comme très toxique parmi les HAP, mais il a peu été étudié de ce point de vue. Son seuil olfactif est de 7,10-3 ppm
Très peu soluble dans l’eau et dans l'air (à température ambiante), il est peu mobile dans le sol où il s'adsorbe sur les particules grasses ou la matière organique (lipides notamment).
In vitro et chez le cobaye, il pénètre très bien la peau (chez l’animal la peau absorbe 80 % du phénanthrène qui y est appliqué [9]).

Sommaire

Chimie

Les réactions typiques du phénanthrène concernent les positions 9 et 10 .

Sous sa forme solide, il se présente en cristaux incolores brillants monocliniques.
Densité de la vapeur (par rapport à l'air) : 6,15
Densité (solide) d20 4 = 1,179 à 25 °C [10],[11]
Log Kow 4,57 (4,28 à 4,63 selon les auteurs) Hansen et al. (1993)
Constante de Henry (Pa.m3/mol)

  • 2,90 Pa.m3/mol à 20 °C
  • 3,98 Pa.m3/mol à 25 °C
  • 0,61 Pa.m3/mol - 4,56 Pa.m3/mol de 20 à 25 °C selon les auteurs Maagd et al. (1998)[12], Mackay et al. (1979)[13]

Coefficient de diffusion dans l’air () 5,4.10-2 cm²s [5].
Coefficient de diffusion dans l’eau 5,7.10cm²s [5].
Coefficient de diffusion à travers le PEHD 2,0.10-7 m²j [14]
Perméabilité cutanée à une solution aqueuse : faute de valeur expérimentale disponible, l'INERIS a proposé de retenir la valeur de 0,23 cm/h, calculée à partir du Kow du phénanthrène par l'US EPA (1992).

Facteur de conversion (dans l'air à 20 °C)[15]:

  • 1 ppm = 7,41 mg/m³ et
  • 1 mg/m³ = 0,13 ppm

Formes canoniques du phénanthrène

Phenanthrenec1.png

\updownarrow

NPhenanthrenec2.png

\updownarrow

NPhenanthrenec3.png

\updownarrow

NPhenanthrenec4.png

\updownarrow

NPhenanthrenec5.png

production

Il est recueilli dans l'huile d'anthracène, dans le filtrat de résidus d'anthracène cristallisé, ou dans la fraction légère de distillation de l'anthracène brut. L'huile étant elle-même produite par distillation du goudron de houille.

Utilisations

On l'utilise pour produire

  • des colorants,
  • des explosifs (c'est un des polluants trouvés dans les sols pollués par certaines usines de munitions),
  • des produits pharmaceutiques.
  • C'est une base utilisées pour synthétiser d'autres produits chimiques (9,10-phénanthrénequinone, acide 2,2 diphénique) dont certains sont par exemple utilisés pour la fabrication de conducteurs électriques utilisés dans les batteries et les cellules photovoltaïques.

Sources de pollution et d’exposition

Le phénanthrène provient essentiellement d'une mauvaise combustion de bois, charbon ou pétrole. Il est généralement associé à la formation de goudron.
On en trouve aussi dans fumée de tabac, les échappements de Diesel ou de moteur à essence, dans les viandes grillées au charbon de bois (barbecue), dans les huiles moteur usagées, etc… La principale voie d'exposition professionnelle est respiratoire ou cutanée dans de rares cas. La granulométrie, solubilité et capacité d'adsorption des particules aéroportées a une grande importance pour le calcul du risque lié à l'inhalation.

Taux actuellement présent dans l'environnement : Selon la base de données HSDB (1999)[16], on en trouve habituellement moins de 0,1 ng/m³ dans l'air et jusqu'à 10 ng/L dans l'eau de pluie ou les eaux de surface, le sol et les sédiments en contenant habituellement moins de 10 µg/kg.

Un indicateur d'exposition (ou IBE pour indice biologique d'exposition) aux HAP est généralement le Naphtol urinaire, qui est dans la population moyenne compris entre zéro et 6 µg/L chez les non fumeurs et inférieur à 40 µg/L chez les fumeurs. En médecine du travail, l'exposition professionnelle au phénanthrène est réputée mieux mesurée par un dosage urinaire des hydroxyphénanthrènes (ou phénanthrols), à partir d'échantillon récolté en fin de journée ou en fin de poste, en fin de la semaine de travail car il est bien corrélé à l'exposition au phénanthrène, mais soumis à d'importantes variations individuelles (il faut notamment tenir compte du fait qu'il est augmenté chez les fumeurs). Selon l'INRS, une exposition professionnelle à environ 3,5 µg de phénanthrène par mètre cube d'air donne des taux urinaires de la somme des 1, 2+9, 3 et 4-OH phénanthrènes allant de 8 à 13 µg/g de créatinine ; Une exposition autour de 40 µg/m³ correspondant à un taux urinaires de la somme des 1, 2+9, 3 et 4-OH phénanthrènes d'environ 40 µg/g de créatinine [17].

Dégradation

Sa structure moléculaire le rend naturellement stable en milieu abiotique où son hydrolyse est a priori nulle.
Il est considéré comme peu biodégradable, mais une biodégradation ou absorption par des plantes et champignons spécialisés fait l'objet d'étude pour la dépollution de sols contaminés.

En milieu aqueux, jusqu'à 54 % du phénanthrène est dégradé en 4 semaines (méthode OCDE 301C)[18], avec d'importantes variations selon la température, l'agitation, la présence de lumière (U.V.)[19] et d'organismes vivants ou non (mais certaines de ses métabolites peuvent également être toxique, voire plus toxiques que la molécule mère). Sa demi-vie en milieu aqueux non adapté serait de 64 à 800 jours selon Howard en 1991[20]. L'UE a retenu une demi-vie de 150 jours en eaux de surfaces (CE, 1996). Il migre peu vers les eaux souterraines mais peut être concentré dans certains sédiments (La moyenne des valeurs de Koc issues de test sur des sédiments à différentes teneur en matière organique : 21 380 L/kg, proche de la valeur donnée par les QSAR : 28 840 L/kg (CE, 1996).)
Comme d'autres HAP il se dégrade lentement à la chaleur, aux UV, ou exposé à l’ozone ou au peroxyde d’azote (NO2).

Toxicologie & écotoxicologie

C'est un produit bio-accumulable, dont la métabolisation et la cinétique dans l'environnement sont encore mal connus. La bioaccumulation a été mesurée pour quelques espèces par traçage de phénanthrène radiomarqué au carbone 14 avec confirmation par chromatographie quand on veut distinguer la molécule mère de ses métabolites.

Diverses expériences ont montré que les organismes aquatiques l'accumulent (plus ou moins selon l'espèce et les conditions du milieu) dans leur milieu intérieur et parfois fortement (par exemple chez certains crustacés) dans l'exosquelette chitineux)

Facteur de bioconcentration (BCF)

Le (BCF pour bio-Concentration Factor) a été déterminé pour différents organismes vivant dans des milieux variés (eau, sol). Attention : l'intensité et la durée d'exposition varient selon les expériences

Plantes : Elles peuvent absorber le phénanthrène et certains de ses composés par leurs feuilles s'il est en phase gazeuses et/ou particulaire, mais aussi via leurs racines quand il est dans le sol[21]. Les algues réagissent en fixant moins l'azote[22].

Animaux : Ce produit semble affecter les animaux marins[23] et a été étudié chez quelques animaux terrestres (dont collembole et vers de terre vivant en sols pollués[24]). Les crustacés d'eau douce sont aussi affectés (test de la daphnie) [25],[26],[27].
Crustacés :

  • Le BCF pour 4 jours était de 210 chez une crevette marine (Crangon septemspinosa) exposée à une contamination en continu sur 4 jours à 4,3 μg/L, suivie d’une période de décontamination de 14 jours (dosages HPLC ; d'après McLeese et Burridge, 1987[28]).
  • Le BCF pour 6 h était très élevée (28 145) pour Pontoporeia hoyi exposée à une contamination en continu sur seulement 6 heures (0,7 à 7,1 μg/L) suivie d’une phase de décontamination de 14 jours. (Dosages Carbone 14 + chromatographie, selon Landrum, 1988). Cet essai n'a pas été retenu comme valeur de référence par l'INERIS parce que le BCF élevé résulte sans doute d'une fixation sur la chitine de la carapace, mais ce résultat garde une valeur pour l'écotoxicologie marine et la concentration dans la chaine alimentaire sauvage. De plus les carapaces de crabes et crevettes sont exploitées par l'industrie agroalimentaire pour en extraire des arômes.

Oligochètes[29] :

  • Le BCF pour 6 h était de 5 055 pour Stylodrilus heringianus exposée à une contamination en continu sur 6 heures à des concentrations de moins de 200 μg/L, avec période de décontamination de 8 jours (Dosages Carbone 14 + chromatographie, selon Frank et al., 1986[30]).

Mollusques marins :

  • Le BCF pour 4 jours était de 1280 pourMya arenaria exposée à une contamination en continu (concentration de 4,3 μg/L sur 4 jours, suivie d’une phase de décontamination de 14 jours, avec Dosages HPLC [31])
  • Le BCF pour 6 h était de 1 240 pour la moule (filtreur) Mytilus edulis exposée à une contamination en continu (concentration de 4,3 μg/L) sur 4 jours suivie d’une phase de décontamination de 14 jours (dosages HPLC [32]).

L'INERIS a proposé de retenir comme référence le facteur de bioconcentrationde 5 055 (obtenue à partir de l’oligochète).

Cinétique dans l’organisme, métabolisation

Les données manquent chez l’Homme, mais une contamination pulmonaire, orale ou cutanée semble possible et sont avérées sur le modèle animal. La voie percutanée est clairement démontrée chez l'Homme : Après application cutanée (8 h/jour, 2 jours consécutifs) d'une crème à 2 % de goudron de houille chez des volontaires sains, le phénanthrène est retrouvé le sang des volontaires étudiés[33] Le métabolisme et la cinétique du phénanthrène n'ont cependant pas été spécifiquement étudiés dans l'organisme humain. On déduit de sa ressemblance chimique avec le naphtalène qu'il devrait induire la formation de quinones, de phénols et qu'il pourrait se conjuguer au glutathion. Voir les données (éco-)toxicologiques des articles ci dessous ;

Articles détaillés : Benzène et Naphtalène.

L'excrétion de la partie non métabolisée du Phénanthrène se fait essentiellement via les urines selon l'INERIS, de même pour la partie métabolisée selon les conclusion d'une étude de salariés d'une cokerie qui a montré que les taux des différents HAP absorbés (phénanthrène, pyrène et benzo(a)pyrène) étaient corrélables aux taux de leurs principaux métabolites connus (phénols et dihydrodiol) mesurés dans les urines [34] ...alors que l'excrétion des autres HAP après biotransformation dans le foie en (poly)-hydroxy-HAP secondairement glucuro ou sulfoconjugués sont plutôt éliminés principalement dans les fèces (15 à 20 % seulement via l'urine)[35]

Chez l’animal ; Le modèle animal a démontré le passage du phénanthrène via les parois intestinales, la peau et les muqueuses des voies respiratoires.

  • voie intestinale : Du phénanthrène radio-marqué injecté par cathéter dans le duodénum de rats de laboratoire, est absorbé puis retrouvé dans la bile et les urines (avec une absorption plus forte en présence de bile) [36].
  • Voie percutanée : 79,1 à 89,7 % d'une dose (6,6 à 15,2 μg/cm²) de phénanthrène appliquée sur la peau de cobayes mise en culture ont été absorbés par la peau.

Ces résultats sont en accord avec ceux obtenus in vivo [37].

  • Voies respiratoires : Trois chiennes (des Beagles) ont été exposées en laboratoire à 2,8 mg/kg de phénanthrène (instillation intra-trachéale) et à 7,7 mg/kg de benzo[a]pyrène (inhalation d'un aérosol) ; 50 % du phénanthrène instillé et environ 100 % du benzo[a]pyrène administré étaient respectivement éliminés au bout de 1 minute et de 2,4 minutes. Les auteurs en déduisent que la clairance des HAP (très lipophiles) tels que le benzo[a]pyrène est limitée par la diffusion des HAP à travers les septas alvéolaires alors que la clairance du phénanthrène (moins lipophiles) est surtout limitée par le flux sanguin[38].

Une étude au moins à porté sur la métabolisation du phénanthrène, mais in vitro sur des cellules de peau de cobayes (Ng et al., 1991). Elle a montré que le phénanthrène y était transformé en 9,10-dihydrodiol phénanthrène, en 3,4-dihydrodiol phénanthrène, en 1,2-dihydrodiol phénanthrène, avec des traces d’hydroxy-phénanthrène.

Toxicité aiguë ?

D'après les données disponibles en 2005, elle n'a que peu été étudiée chez l’homme, de même que chez l’animal

Par voie externe.

  • Quelques études existantes laissent penser que le phénanthrène ne présente pas de toxicité aiguë chez l'animal lorsqu'il est exposé par voie externe. Aucun test n'a montré chez l'animal de sensibilisation cutanée par contact avec phénanthrène[39].

Pour les autres voies :

  • Des DL50 de 700 mg/kg et de 1 000 mg/kg ont été données pour la souris[40].
  • La DL50 par voie intra-péritonéale est de 700 mg/kg[41]
  • La DL50 par voie intraveineuse est de 56 mg/kg (Montizaan et al., 1989).

Effets induits : Ils ont peu été étudiés.
Chez le rat, l'injection intra-péritonéale a été suivie d'une congestion du foie, d'une augmentation des taux d’aspartate aminotransférase et d’alanine aminotransférase, puis d' γ-glutamyl transpeptidase après 24 h[42].
Chez le rat toujours, une exposition orale à 100 mg/kg/jour de phénanthrène durant 4 jours s'est traduite par 30 % d'accroissement de l’activité de la carboxylesterase (enzyme catalysant l’hydrolyse des esters acides carboxyliques) de la muqueuse intestinale, sans altérer l’action de la carboxylestérase hépatique et rénale[43] . Sans autres symptômes de toxicité gastro-intestinale, cette seule réaction n'est pas considérée comme un signe de forte toxicité, mais c'est un indice qui peut annoncer la survenue d'effets plus sérieux rappelle l'INERIS.
D'autres rats exposés 4 jours à 100 mg/kg/jour de phénanthrène ont présenté une hausse minime du taux d'aldéhyde déshydrogénase cytosolique, mais très inférieure à celle observée pour les principaux HAP [44].

Toxicité chronique

En 2005, l'INERIS ne disposait pas pour son évaluation de donnée sur d'éventuels effets systémiques chronique chez l’Homme .

Effets cancérigènes ?

Faute de données suffisantes ou disponibles (quel que soit le mode d’absorption de la molécule) ni chez l'homme, ni même chez l'animal, ce risque n'a pas été évalué ni par l’Union Européenne, ni par le CIRC/IARC, ni par l'US EPA (IRIS)[45]. Pour l'INERIS, les études faites sur les animaux laissent penser que le phénanthrène ne serait pas cancérigène, mais des données contradictoires existent, qui laissent penser que certains composés ou métabolites du produit pourraient être cancérigène.
En 2005, seule une étude avait en 1964 testé le rôle promoteur du phénanthrène ; elle n'avait pas à l'époque détecté d’effet promoteur [46], cependant selon des données plus récentes :

  • dans les microsomes de foie de rats exposés, du phénanthrène est oxydé en une faible quantité de 1,2-diol-3,4-époxyde reconnu comme potentiellement cancérigène[47]
  • 200 mg de phénanthrène donné dans de l’huile de sésame à 10 rats femelles Sprague-Dawley de 50 jours, n’ont pas induit de tumeur mammaire 10 jours après l’administration du phénanthrène selon Huggins et Yang en 1962[48]… Mais des rats oralement exposés à 20 mg de 7,12-diméthylbenz[a]anthracène développaient dans 100 % des cas des tumeurs mammaires.
  • 3 applications par semaine d’une solution à 5 % de phénanthrène sur la peau de souris n’a pas induit pas de tumeur, même après application cutanée de benzo[a]pyrène (Roe et Grant, 1964), mais les auteurs ne citent pas dans l'étude le nom du solvant ni le nombre de souris testées ni leurs souches (Roe et Grant, 1964).

4 expériences ont testé le rôle initiateur potentiel du phénanthrène,

  • trois n'en ont pas détecté, par exposition orale ou cutanée à l’huile de croton ou au 12-otétradécanoylphorbol-13-acétate (TPA) (Lavoie et al., 1981[49] ; Salaman et Roe, 1956[50],[51]).
  • l'une a détecté un puissant effet synergique : 10 μmol de phénanthrène appliqué sur la peau de souris sont sans effet cancérigène, mais 40 % des souris développent un papillome si ce traitement a été suivi, une semaine après, d'une application de TPA (5 μmol/dose, 2 fois par semaine, durant 34 semaines[52].

Effets génotoxiques ?

Il n'a pas été examiné par l’Union européenne et un éventuel effet du phénanthrène sur la reproduction et le développement, chez l’homme ne semble pas avoir été étudié, ni chez l'animal; Il pourrait être étudié en France dans les milieux aquatiques, en complément du SEQ-Eau [53].

Valeurs toxicologiques de référence (VTR)

Selon l'INERIS, il n'existait pas encore de VTR en 2005 de pour des « effets avec seuil » pour ce produit, mais une TDI (Tolerable Daily Intake, soit la quantité d'absorption journalière tolérable ou DJT (dose journalière tolérable, en français) a été proposée pour une exposition chronique par voie orale au phénanthrène : une TDI de 4,10-2 mg/kg/j ; Cette valeur de risque a en fait été élaborée pour tous les hydrocarbures aromatiques de 10 à 16 carbones non actuellement considérés comme cancérigènes [54].

Remédiation, dépollution

Cette molécule fait partie des toxiques et polluants pour lesquels sont testées de nouvelles techniques de phytoextraction ou phytodépollution[55],[56]

Métrologie

Les échantillons doivent être transporté rapidement et conservé réfrigérés (autour de °C), dans flacons de verre teintés soigneusement scellés, et dans l'obscurité (le phénanthrène peut s'adsorber sur le plastique et est pour partie dégradé par la lumière). Les extraits ne doivent pas être évaporés à sec. Plusieurs échantillons sont recommandés (au moins deux)

Différentes méthodes standardisées et normées sont reconnues au niveau internationales, pour l'eau, les sols, l'air, les sédiments… avec par exemple :

  • NF ISO 17993 (2002)
  • NF ISO 13877 (avril 1999)
  • ISO 14507 (mars 2003):
  • Méthode NIOSH 5506 (janvier 1998)
  • Méthode NIOSH 5515 (janvier 1998)
  • Norme NF X 43-041 (janvier 1998)
  • Norme FD X 31-610 (novembre 1997)
  • Méthode EPA 8100 (septembre 1986)
  • Méthode EPA 8310 (septembre 1986
  • Méthode EPA T0-13 (septembre 1986)

Voir aussi

Articles connexes


Liens externes

Bibliographie

  • (en) ATSDR (1995) - Polycyclic aromatic hydrocarbons (PAHs). Agency for Toxic Substances and Disease Registry. http://www.atsdr.cdc.gov/toxpro2.html.
  • (en) Swartz R.C., Kemp P.F., Schults D.W. and Lamberson J.O. (1988) - Effects of mixtures of sediment contaminants on the marine infaunal amphipod Rhepoxynius abronius. Environ Toxicol Chem, 7, 10, 1013-1020.
  • (en) Swartz R.C., Ferraro S.P., Lamberson J.O., Cole F.A., Ozretich R.J., Boese B.L. and Schults D.W. (1997) - Photoactivation and toxicity of mixtures of polycyclic

aromatic hydrocarbon compounds in marine sediment. Environ Toxicol Chem, 16, 2151-2157.

  • (en) US EPA (1990) ; Determination of benzo[a]pyrene and other polynuclear aromatic hydrocarbons in indoor air. U.S. Environmental Protection Agency.
  • (en) US EPA (1992) ; Dermal exposure assessment: principles and applications. U.S. EPA Environmental Protection Agency, Office of Toxic Substances. Washington. Interim report. EPA/600/8-91/011B. http://www.epa.gov/epahome/search.html.
  • (en) US EPA (1993) ; Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons. U.S. EPA Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and assessment Office.

Notes et références

Source principale (à consulter régulièrement pour d'éventuelles mises à jour) :Fiche toxicologique Ineris sur le phénanthrène (consultée 2008 12 21)

  1. Lide D.R. (1998) Phenanthrene Handbook of Chemistry and Physics. New-York, CRC Press. 78th Ed.
  2. Merck (1989) Phenanthrene - The Merck Index An Encyclopedia of Chemicals, Drugs, and Biologicals. Rahway, Merck and Co, p 7354, 11th Ed
  3. Prager J.C. (1995) Phenanthrene. Environmental contaminant Reference Databook, Van Nostrand Reinhold, vol 1, pp. 919-920
  4. Hansen D.J. et al. (1993) Sediment quality criteria for the protection of benthic organisms : Phenanthrene. US Environmental Protection Agency, Office of Toxic Substances. EPA / 822/R-93/014.
  5. a , b  et c STF (1991) Naphtalene, Environmental Systems and Technologies. Soil Transport and Fate Database and Model Management System. Blacksburg. CD.
  6. Verschueren K. (1996) - Phenathrene. Handbook of Environmental Data on Organic Chemicals. New York, Van Nostrand Reinhold Co. 3rd Ed, pp. 1756-1762.
  7. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, « Evaluations Globales de la Cancérogénicité pour l'Homme, Groupe 3 : Inclassables quant à leur cancérogénicité pour l'Homme » sur http://monographs.iarc.fr, 16 janvier 2009, CIRC. Consulté le 22 août 2009
  8. « Phénanthrène » dans la base de données de produits chimiques Reptox de la CSST (organisme canadien responsable de la sécurité et de la santé au travail), consulté le 25 avril 2009
  9. Fiche toxicologique Ineris sur le phénanthrène Version N3-24-avril 2005 mise à jour le 27/07/2006, consultée le 21 dec 2008
  10. SAX (1999) ; Phenanthrene, Dangerous Properties of Industrial Materials. Lewis R. J. CD.
  11. Merck (1989) cités par l'INERIS
  12. Maagd P., Ten Hulscher D., Van Den Heuvel H., Opperhuizen A. and Sijm D. (1998) Physicochemical properties of polycyclic aromatic hydrocarbons: aqueous solubilities, n-Octanol/Water partition coefficients, and Henry's law constants. Environ Toxicol Chem, 17, 2, 251-257.
  13. Mackay D., Shiu W.Y. and Sutherland R.P. (1979) Determination of air-water Henry's law constants for hydrophobic pollutants. Environ Sci Technol, 13, 333-337
  14. Veerkamp W. and Berge T. (1994) - The Concepts of HESP. Reference Manual. Human Exposure to Soil Pollutants. The Hague, Shell International Petroleum Maatschappij, pp. 1-66, 2.10a Ed.
  15. ineris
  16. HSDB (1999) Phenanthrène. Hazardous Substances Data Bank, National Library of Medicine ([htpp://www.toxnet.nlm.nih.gov Voir])
  17. %)Fiche INRS
  18. CITI (1992) Biodegradation and Bioaccumulation data of existing chemicals based on the CSCL Japan. Chemicals Inspection and Testing Institute. Japan. October 1992.
  19. Huang X.D., Dixon D.G. and Greenberg B.M. (1993) Impacts of UV radiation and photomodification on the toxicity of PAHs to the higher plant Lemna gibba (duckweed). Environ Toxicol Chem, 12, 1067-1077.
  20. Howard P.H., Boethling R.S. and Jarvis W.F. (1991) Phenantrene - Handbook of environmental degradation rates. Chealsea, Michigan, Lewis Publisher. W. M. Meylan and E. M. Michalenko, p 725.
  21. Kipopoulou A.M., Manoli E. and Samara C. (1999) Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in industrial area. Environ Poll, 106, 369-380.
  22. Bastian M.V. and Toetz D.W. (1985) Effect of polynuclear hydrocarbons on algal nitrogen fixation (acetylene reduction). Bull Environ Contam Toxicol, 35, 258-265.
  23. Battelle Ocean Sciences (1987) Acute toxicity of phenanthrene to saltwater animals. Battelle Ocean Sciences. Duxbury, MA. Report to US EPA.
  24. Bowmer C.T., Roza P., Henzen L. and Degeling C. (1993) The development of chronic toxicological tests for PAH contaminated soils using the earthworm Eisenia fetida and the springtail Folsomia candida. TNO Institute of Environmental Sciences,. Delft. IMW-R92/387
  25. Geiger J.G.J. and Buikema A.L.J. (1982) Hydrocarbons depress growth and reproduction of Daphnia pulex (Cladocera). J Fish Aquat Sci, 39, 830-836.
  26. Hooftman R.J. and Evers de Ruiter A. Investigations into aquatic toxicity of phenanthrene (cover-report for reproduction tests with the waterflea Daphnia magna and an early life stage test with the zebra fish Brachydanio rerio). TNO Institute of Environmental Sciences. Delft, The Netherlands.
  27. Hooftman R.J. and Evers de Ruiter A. Early life stage tests with Brachydanio rerio and several polycyclic aromatic hydrocarbons using an intermittent flow-through system. TNO Institute of Environmental Sciences. Delft.
  28. McLeese D.W. and Burridge L.E. (1987) Comparative accumulation of PAHs in four marine invertebrates. Oceanic processes in marine pollution. Malabar, Florida, Kirger, R.E. I. M. Capuzzo and D. R. Kester, pp. 109-118.
  29. Lotufo G.R. and Fleeger J.W. (1996) Toxicity of sediment-associated pyrene and phenanthrene to Limnodrilus hoffmeisteri (Oligochaeta: Tubificidae). Environ Toxicol Chem, 15, 9, 1508-1516.
  30. Frank A.P., Landrum P.F. and Eadie B.J. (1986) Polycyclic aromatic hydrocarbon : Rates of uptake, depuration, and biotransformation by Lake Michigan (Stylodrilus heringianus). Chemosphere, 15, 317-330.
  31. selon McLeese et Burridge, 1987
  32. selon McLeese et Burridge, 1987
  33. Storer J.S., DeLeon I., Millikan L.E., Laseter J.L. and Griffing C. (1984) Human absorption of crude coal tar products. Arch Dermatol, 120, 7, 874-877.
  34. Grimmer G., Dettbarn G. and Jacob J. (1993) Biomonitoring of polycyclic aromatic hydrocarbons in highly exposed coke plant workers by measurement of urinary phenanthrene and pyrene metabolites (phenols and dihydrodiols). Int Arch Occup Environ Health, 65, 3, 189-199
  35. Fiche INRS
  36. Rahman A., Barrowman J.A. and Rahimtula A. (1986) The influence of bile on the bioavailability of polynuclear aromatic hydrocarbons from the rat intestine. Can J Physiol Pharmacol, 64, 9, 1214-1218.
  37. Ng K.M., Chu I., Bronaugh R.L., Franklin C.A. and Somers D.A. (1991) Percutaneous absorption/metabolism of phenanthrene in the hairless guinea pig:comparison of in vitro and in vivo results. Fundam Appl Toxicol, 16, 3, 517-524
  38. Gerde P., Muggenburg B.A., Hoover M.D. and Henderson R.F. (1993) Disposition of polycyclic aromatic hydrocarbons in the respiratory tract of the beagle dog. I. The alveolar region. Toxicol Appl Pharmacol, 121, 2, 313-318.
  39. Old L.J., Benacerraf B. and Carswell E. (1963) Contact reactivity of aromatic hydrocarbons in aqueous samples by reversed-phase liquide chromatography. Anal Chem, 51, 315-320.
  40. Montizaan G.K., Kramers P.G.H., Janus j.A. and Posthumus R. (1989) Integrated criteria document PAH: Effect of 10 selected compunds. Bilthoven, National Institute of Public Health and Environmental protection, Appendix to Report N°. 758474011, (Re-publication in March 1989 of addendum to Report No. 758447007), 180pp.
  41. Simmon V.F., Rosenkranz H.S., Zeiger E. and Poirier L.A. (1979) ; Mutagenic activity of chemical carcinogens and related compounds in the intraperitoneal hostmediated assay. J Natl Cancer Inst, 62, 4, 911-918.
  42. Yoshikawa T., Ruhr L.P., Flory W., Banton M.I., Giamalva D., Church D.F. and Pryor W.A. (1987) - Toxicity of polycyclic aromatic hydrocarbons. III. Effects of betanaphthoflavone pretreatment on hepatotoxicity of compounds produced in the ozonation or NO2-nitration of phenanthrene and pyrene in rats. Vet Hum Toxicol, 29, 2, 113-117
  43. Nousiainen U., Torronen R. and Hanninen O. (1984) Differential induction of various carboxylesterases by certain polycyclic aromatic hydrocarbons in the rat. Toxicology, 32, 3, 243-251
  44. Torronen R., Nousiainen U. and Hanninen O. (1981) - Induction of aldehyde dehydrogenase by polycyclic aromatic hydrocarbons in rats. Chem Biol Interact, 36,1, 33-44.
  45. Doornaert B. and Pichard A. (2003) - HAP - Evaluation de la relation dose-réponse pour des effets cancérigènes : approche substance par substance (facteurs d'équivalence toxique - FET) et approche par mélanges. Évaluation de la relation dose-réponse pour des effets non cancérigènes : Valeurs Toxicologiques de Référence (VTR). Institut national de l'environnement industriel et des risques. Verneuil en Halatte.64 pp.
  46. Roe F.J.C. and Grant G.A. (1964) - Tests of pyrene and phenanthrene for incomplete carcinogenic and anticarcinogenic activity. (Abstract). Br. Empire Cancer Campaign., 41, 59-60.
  47. Jacob J., Schmoldt A. and Grimmer G. (1982) Influence of monooxygenase inducers on the metabolic profile of phenanthrene in rat liver microsomes. Toxicology, 25, 4, 333-343.
  48. Huggins C. and Yang N.C. (1962) - Induction and extinction of mammary cancer. Science, 137, 257-262.
  49. LaVoie E.J., Tulley-Freiler L., Bedenko V. and Hoffman D. (1981) Mutagenicity, tumor-initiating activity, and metabolism of methylphenanthrenes. Cancer Res, 41, 9 Pt 1, 3441-3447.
  50. Salaman M.H. and Roe F.J.C. (1956) Further tests for tumor-initiating activity: N,NDi(2-chloroethyl)-p-aminophenylbutyric acid (CB 1348) as an initiator of skin tumour formation in the mouse. Br J Cancer, 10, 363-378.
  51. Wood A.W., Chang R.L., Levin W., Ryan D.E., Thomas P.E., Mah H.D., Karle J.M., Yagi H., Jerina D.M. and Conney A.H. (1979) Mutagenicity and tumorigenicity of phenanthrene and chrysene epoxides and diol epoxides. Cancer Res, 39, 10, 4069-4077.
  52. Scribner J.D. (1973) - Tumor initiation by apparently noncarcinogenic polycyclic aromatic hydrocarbons. J Natl Cancer Inst, 50, 6, 1717-1719.
  53. Vindimian E., Bisson M., Dujardin R., Flammarion P., Garric J., Babut M., Lamy M.H., Porcher J.M. and Thybaud E. (2000) ; Complément au SEQ-Eau : méthode de détermination des seuils de qualité pour les substances génotoxiques. INERIS. Verneuil-en-Halatte. Rapport final. 135 pages
  54. Baars A.J., Theelen R.M.C., Janssen P.J.C.M., Hesse J.M., van Apeldoorn M.E., Meijerink M.C.M., Verdam L. and Zeilmaker M.J. (2001) - Re-evaluation of human toxicological maximum permissible risk levels RIVM, Rijsinstituut voor volksgezondheid en milieu. report 711 701 025
  55. CORGIE, S., JONER, E, LEYVAL, C, 2002 Phenanthrène biodegradation and microbial community gradients in the rhizosphere of Lolium perenne International Conference on Microbiology of hydrocarbons: state of the art and perspectives, IFP Rueil Malmaison Juin 2002
  56. LEGLIZE P., SAADA A., BERTHELIN J., LEYVAL C., 2002 Adsorption et biodégradation du phénanthrène au sein d’une barrière perméable réactive : Etude de matériaux candidats. 2002 Compte-rendu de la Première rencontre nationale de la recherche sur les sites et sols pollués : bilan et perspectives, 12 et 13 décembre 2002 – Paris. LEGLIZE P., SAADA A., BERTHELIN J., LEYVAL C., Adsorption and biodegradation of phenanthrene on candidate permeable barrier media 2003. CONSOIL 2003, 12-13 mai
  • Portail de la chimie Portail de la chimie
Ce document provient de « Ph%C3%A9nanthr%C3%A8ne ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article 85-01-8 de Wikipédia en français (auteurs)

Игры ⚽ Нужен реферат?

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”