Béton

Béton
Icône de paronymie Cet article possède des paronymes, voir : Beton et Betton.
Un mètre cube de béton (représentant la production mondiale annuelle de béton par habitant)

Le béton est un matériau de construction composite fabriqué à partir de granulats naturels (sable, gravillons) ou artificiels (granulats légers) agglomérés par un liant. Le liant peut être qualifié d'« hydrique », lorsque sa prise se fait par hydratation.
Ce liant est appelé couramment « ciment » ; on obtient dans ce cas un « béton de ciment » un des plus souvent utilisés.
On peut aussi utiliser un liant hydrocarboné (bitume), ce qui conduit à la fabrication du « béton bitumineux ».
Le « coulis » est un mélange très fluide de ciment et d'eau.
Enfin, lorsque les granulats utilisés avec le liant hydraulique se réduisent à des sables, on parle alors de « mortier ». On peut optimiser la courbe granulaire du sable, auquel cas on parlera de « béton de sable ».
Le béton frais associé à de l'acier permet d'obtenir le « béton armé », un matériau de construction courant.
Le béton frais associé à des fibres permet d'obtenir des « bétons fibrés ».

Le béton est le deuxième produit le plus utilisé mondialement par la société, après l'eau potable : 1 m3 par an et par habitant[1]

Sommaire

Histoire

Article détaillé : Histoire du béton.
Le pont du Jardin des plantes de Grenoble, premier ouvrage au monde en béton coulé, construit en 1855 par Joseph et Louis Vicat

Les Romains connaissaient déjà une forme de béton, mais son principe fut perdu jusqu'à sa redécouverte en 1756 par l'ingénieur britannique John Smeaton.

Popularisé depuis le XIXe siècle, notamment grâce au ciment de Portland et à Louis Vicat en France (à Grenoble), le béton de ciment est, à l'heure actuelle, le matériau de construction le plus utilisé.

Principe chimique

La réaction chimique qui permet au béton de ciment de faire prise est assez lente : au bout de 7 jours, la résistance mécanique atteint à peine 75 % de la résistance finale.
La vitesse de durcissement du béton peut cependant être affectée par la nature du ciment utilisé, par la température du matériau lors de son durcissement, par la quantité d'eau utilisée, par la finesse de la mouture du ciment, ou par la présence de déchets organiques. La valeur prise comme référence dans les calculs de résistance est celle obtenue à 28 jours, équivalent à 80 % de la résistance finale.
Il est possible de modifier la vitesse de prise en incorporant au béton frais des adjuvants ou des additifs, ou en utilisant un ciment prompt ou à prise rapide. D'autres types d'adjuvants permettent de modifier certaines propriétés physico-chimiques des bétons. On peut, par exemple, augmenter la fluidité du béton pour faciliter sa mise en œuvre en utilisant des « plastifiants », le rendre hydrofuge par l'adjonction d'un liquide hydrofuge ou d'une résine polymère, ou maîtriser la quantité d'air incluse avec un « entraîneur d'air ».
Différents modèles (théorie de la percolation, modèle des empilements granulaires pour les bétons de haute performance) permettent d'expliquer les réactions physiques et chimiques de la « prise ».

Le matériau béton

Le béton

Si un béton classique est constitué d'éléments de granulométrie décroissante, en commençant par les granulats (NF EN 12620 - spécification pour les granulats destinés à être incorporés dans les bétons), le spectre granulométrique se poursuit avec la poudre de ciment puis parfois avec un matériau de granulométrie encore plus fin comme une fumée de silice (récupérée au niveau des filtres électrostatiques dans l'industrie de l'acier). L'obtention d'un spectre granulométrique continu et étendu vers les faibles granulométries permet d'améliorer la compacité, donc les performances mécaniques.

L'eau a un double rôle d'hydratation de la poudre de ciment et de facilitation de la mise en œuvre (ouvrabilité). En l'absence d'adjuvant plastifiant, la quantité d'eau est déterminée par la condition de mise en œuvre. Un béton contient donc une part importante d'eau libre, ce qui conduit à une utilisation non optimale de la poudre de ciment. En ajoutant un plastifiant (appelé aussi réducteur d'eau), la quantité d'eau utilisée décroît et les performances mécaniques du matériau sont améliorées (BHP : béton hautes performances).

Les résistances mécaniques en compression obtenues classiquement sur éprouvettes cylindriques normalisées, sont de l'ordre de :

  • BFC : bétonnage fabriqué sur chantier : 25 à 35 MPa (méga Pascal), peut parfois atteindre 50 MPa ;
  • BPE : béton prêt à l'emploi, bétonnage soigné en usine (préfabrication) : 16 à 60 MPa ;
  • BHP : béton hautes performances : jusqu'à 80 MPa ;
  • BUHP : béton ultra hautes performances, en laboratoire : 120 MPa.
  • BFUHP : béton fibré à ultra hautes performances

La résistance en traction est moindre avec des valeurs de l'ordre 2,1 à 2,7 MPa pour un béton de type BFC.

La conductivité thermique couramment utilisée est de 1,75 W·m−1·K−1, à mi-chemin entre les matériaux métalliques et le bois.

Formulation d'un béton

Le choix des proportions de chacun des constituants d'un béton afin d'obtenir les propriétés mécaniques et de mise en œuvre souhaitées s'appelle la formulation. Plusieurs méthodes de formulations existent, dont notamment :

  • la méthode Baron ;
  • la méthode Bolomey ;
  • la méthode de Féret ;
  • la méthode de Faury ;
  • la méthode Dreux-Gorisse.[réf. nécessaire]

La formulation d'un béton doit intégrer avant tout les exigences de la norme NF EN 206-1, laquelle, en fonction de l'environnement dans lequel sera mis en place le béton, sera plus ou moins contraignante vis-à-vis de la quantité minimale de ciment à insérer dans la formule ainsi que la quantité d'eau maximum tolérée dans la formule. De même, à chaque environnement donné, une résistance garantie à 28 jours sur éprouvettes sera exigée aux producteurs, pouvant justifier des dosages de ciments plus ou moins supérieurs à la recommandation de la norme, et basée sur l'expérience propre à chaque entreprise, laquelle étant dépendante de ses matières premières dont la masse volumique peut varier, notamment celle des granulats.

D'autres exigences de la norme NF EN 206-1 imposent l'emploi de ciment particuliers en raison de milieux plus ou moins agressifs, ainsi que l'addition d'adjuvants conférant des propriétés différentes à la pâte de ciment que ce soit le délai de mise en œuvre, la plasticité, la quantité d'air occlus, etc.

Classification des bétons

Le béton utilisé dans le bâtiment, ainsi que dans les travaux publics comprend plusieurs catégories.

En général le béton peut être classé en trois groupes (norme NF EN 206-1 articles 3.1.7 à 3.1.9), selon sa masse volumique ρ :

  • béton normal : ρ entre 2 000 et 2 600 kg/m³ ;
  • béton lourd : ρ > 2 600 kg/m³.
  • béton léger : ρ entre 800 et 2 000 kg/m³ ;

Le béton courant peut aussi être classé en fonction de la nature des liants :

  • béton de ciment ;
  • béton silicate (Chaux)
  • béton de gypse (gypse) ;
  • béton asphalte.

Lorsque des fibres (métalliques, synthétiques ou minérales) sont ajoutées, on distingue :

  • les bétons renforcés de fibre (BRF) qui sont des bétons « classiques » qui contiennent des macrofibres (diamètre ~1 mm) dans proportion volumique allant de 0,5 % à 2 % ;
  • les bétons fibrés à ultra hautes performances (BFUHP). Ce sont des bétons (BUHP) qui contiennent des microfibres (diamètre > 50 μm), ou un mélange de macrofibres et de microfibres. Utilisés depuis le milieu des années 1990 dans le génie civil et parfois la réhabilitation d'ouvrages anciens, en milieu littoral notamment[2].

Le béton peut varier en fonction de la nature des granulats, des adjuvants, des colorants, des traitements de surface et peut ainsi s’adapter aux exigences de chaque réalisation, par ses performances et par son aspect.

  • Les bétons courants sont les plus utilisés, aussi bien dans le bâtiment qu'en travaux publics. Ils présentent une masse volumique de 2 300 kg/m³ environ. Ils peuvent être armés ou non, et lorsqu'ils sont très sollicités en flexion, précontraints.
  • Les bétons lourds, dont les masses volumiques peuvent atteindre 6 000 kg/m³ servent, entre autres, pour la protection contre les rayons radioactifs.
  • Les bétons de granulats légers, dont la résistance peut être élevée, sont employés dans le bâtiment, pour les plates-formes offshore ou les ponts.

Différents types de granulats

Les granulats utilisés pour le béton sont soit d'origine naturelle, soit artificiels. Leur taille variable déterminera l'utilisation du béton (les gros granulats pour le gros œuvre, les très fin pour le béton sophistiqué). La résistance du béton augmente avec la variété des calibres mélangés.

Les granulats naturels
Origine minéralogique

Parmi les granulats naturels, les plus utilisés pour le béton proviennent de roches sédimentaires siliceuses ou calcaires, de roches métamorphiques telles que les quartzites, ou de roches éruptives telles que les basaltes, les granites, les porphyres.

Granulats roulés et granulats de carrières

Indépendamment de leur origine minéralogique, on classe les granulats en deux catégories qui doivent être conformes à la norme NF EN 12620 et la XP P 18-545 (granulats pour bétons) :

  1. les granulats alluvionnaires, dits roulés, dont la forme a été acquise par l'érosion. Ces granulats sont lavés pour éliminer les particules argileuses, nuisibles à la résistance du béton et criblés pour obtenir différentes classes de dimension. Bien qu'on puisse trouver différentes roches selon la région d'origine, les granulats utilisés pour le béton sont le plus souvent siliceux, calcaires ou silico-calcaires ;
  2. les granulats de carrière sont obtenus par abattage et concassage, ce qui leur donnent des formes angulaires Une phase de pré-criblage est indispensable à l'obtention de granulats propres. Différentes phases de concassage aboutissent à l'obtention des classes granulaires souhaitées. Les granulats concassés présentent des caractéristiques qui dépendent d'un grand nombre de paramètres : origine de la roche, régularité du banc, degré de concassage… La sélection de ce type de granulats devra donc être faite avec soin et après accord sur un échantillon.
Les granulats artificiels
Sous-produits industriels, concassés ou non

Les plus employés sont le laitier cristallisé concassé et le laitier granulé de haut fourneau obtenus par refroidissement à l'eau. La masse volumique apparente est supérieure à 1 250 kg/m³ pour le laitier cristallisé concassé, 800 kg/m³ pour le granulé. Ces granulats sont utilisés notamment dans les bétons routiers. Les différentes caractéristiques des granulats de laitier et leurs spécifications font l'objet des normes NF P 18-302 et 18-306.

Granulats à hautes caractéristiques élaborés industriellement

Il s'agit de granulats élaborés spécialement pour répondre à certains emplois, notamment granulats très durs pour renforcer la résistance à l'usure de dallages industriels (granulats ferreux, carborundum…) ou granulats réfractaires.

Granulats allégés par expansion ou frittage 

Ces granulats, très utilisés dans de nombreux pays comme l'URSS ou les États-Unis, n'ont pas eu en France le même développement, bien qu'ils aient des caractéristiques de résistance, d'isolation et de poids très intéressantes. Les plus usuels sont l'argile ou le schiste expansé (norme NF P 18-309) et le laitier expansé (NF P 18-307). D'une masse volumique variable entre 400 et 800 kg/m³ selon le type et la granularité, ils permettent de réaliser aussi bien des bétons de structure que des bétons présentant une bonne isolation thermique. Les gains de poids intéressants puisque les bétons réalisés ont une masse volumique comprise entre 1 200 et 2 000 kg/m³.

Les granulats très légers

Ils sont d'origine végétale et organique que minérale (bois, polystyrène expansé). Très légers – 20 à 100 kg/m³ – ils permettent de réaliser des bétons de masse volumique comprise entre 300 et 600 kg/m³. On voit donc leur intérêt pour les bétons d'isolation, mais également pour la réalisation d'éléments légers : blocs coffrants, blocs de remplissage, dalles, ou rechargements sur planchers peu résistants.

a) Les bétons cellulaires (bétons très légers) dont les masses volumiques sont inférieures de 500 kg/m³. Ils sont utilisés dans le bâtiment, pour répondre aux problèmes d'isolation. Lors de sa réalisation on lui incorpore des produits moussants créant des porosités dans le béton.

b) Les bétons de fibres, plus récents, correspondent à des usages très variés : dallages, éléments décoratifs, mobilier urbain.

Étude de la composition du béton

En général il n’existe pas de méthode de composition du béton qui soit universellement reconnue comme étant la meilleure. La composition du béton est toujours le résultat d’un compromis entre une série d’exigences généralement contradictoires.

De nombreuses méthodes de composition du béton plus ou moins compliquées et ingénieuses ont été élaborées. On notera qu’une étude de composition de béton doit toujours être contrôlée expérimentalement et qu’une étude effectuée en laboratoire doit généralement être adaptée ultérieurement aux conditions réelles du chantier.

Une méthode de composition du béton pourra être considérée comme satisfaisante si elle permet de réaliser un béton répondant aux exigences suivantes :

Le béton doit présenter, après durcissement, une certaine résistance à la compression. Le béton frais doit pouvoir facilement être mis en œuvre avec les moyens et méthodes utilisées sur le chantier. Le béton doit présenter un faible retrait (source de fissurations internes et externes : phénomène de « faïençage ») et un fluage peu important. Le coût du béton doit rester le plus bas possible. Dans le passé, pour la composition du béton, on prescrivait des proportions théoriques de ciment, d’agrégat fin et d’agrégat grossier. Mais l’élaboration des ciments ayant fait des progrès considérables, de nombreux chercheurs ont exprimé des formules en rapport avec les qualités recherchées :

  • minimum de vides internes, déterminant une résistance élevée ;
  • bonne étanchéité améliorant la durabilité ;
  • résistance chimique ;
  • résistance aux agents extérieurs tels que le gel, l’abrasion, la dessiccation.

Sur un petit chantier où l’on fabrique artisanalement et souvent bien son béton l’on utilise le vieux principe : 2/3 de gros éléments et 1/3 d’éléments fins, soit 800 litres de gravillons et 400 litres de sable par mètre cube de béton pour 350 à 400 kg de ciment. La quantité d’eau de gâchage varie trop souvent au gré du savoir-faire du maçon, la nature de ciment, l’humidité du granulat passant après la consistance du béton à obtenir.

Le béton peut varier en fonction de la nature des granulats, des adjuvants, des colorants, des traitements de surface, et peut ainsi s’adapter aux exigences de chaque réalisation, par ses performances et par son aspect.

La composition d’un béton et le dosage de ses constituants sont fortement influencés par l’emploi auquel est destiné le béton et par les moyens de mise en œuvre utilisés.

Essai de gâchage

Béton frais : mesure Δ (contrôle des dosages effectifs) mesure plasticité (contrôle de la consistance) mesure teneur en air (contrôle des vides) Fabrication éprouvette (contrôle de β moyen)

Béton durci : mesure Δ, mesure β cube, évolution scléromètre, évolution essai gel, perméabilité, essais spéciaux...

Corrections

En fonction des observations, des mesures faites lors de l’essai de gâchage et des résistances mécaniques obtenues, il sera nécessaire d’effectuer des corrections.

a) Consistance : Lors de l’essai de gâchage, il est recommandé de ne pas ajouter tout de suite la quantité d’eau totale E prévue. Il est préférable d’ajouter seulement 95 % de E, de mesurer la consistance, puis d’ajouter de l’eau jusqu’à obtention de la consistance prescrite.

b) Dosage en ciment : Si le dosage en ciment effectivement réalisé est incorrect, on devra le corriger. S’il faut rajouter (ou enlever) un poids ΔC de ciment pour obtenir le dosage désiré, on devra enlever (ou rajouter) un volume absolu équivalent de sable, soit un poids ΔC égal à :

Si ΔC est important, il faudra aussi corriger la quantité d’eau.

c) Résistances mécaniques : Si les résistances mécaniques sont insuffisantes, il faudra avoir recours à l’une ou à plusieurs des possibilités suivantes :

  • Augmenter le dosage en ciment (au-delà de 400 kg/m³, une augmentation de dosage en ciment n’a plus qu’une très faible influence sur l’accroissement de résistance).
  • Diminuer le dosage en eau sans changer la granulométrie ;
  • Corriger la granulométrie et réduire la quantité d’eau ;
  • Utiliser un autre type de granulats ;
  • Utiliser un adjuvant et réduire la quantité d’eau ;
  • Utiliser un ciment à durcissement plus rapide.

On devra en tous cas toujours veiller à ce que la consistance du béton permette une mise en œuvre correcte.

L'utilisation du béton

Béton aggloméré

Le béton aggloméré est inventé par François Coignet. Sa première utilisation a été faite pour la maison de François Coignet en 1853.

L'église Sainte-Marguerite au Vésinet, réalisée en 1855 par l'architecte L. A. Boileau suivant le procédé Coignet de construction de béton aggloméré imitant la pierre, fut le premier bâtiment public non industriel réalisé en béton en France. Cette église fut très critiquée lors de sa réalisation en raison de sa morphologie mais aussi du procédé Coignet qui a provoqué très rapidement des marbrures noires sur les murs (en raison de présence de mâchefer dans le béton).

C'est un matériau imitant la pierre.

Béton armé

Article détaillé : Béton armé.
Le béton armé a été utilisé dès la Seconde Guerre Mondiale pour la réalisation de dispositifs défensifs tels que bunkers ou lignes antichars. (ici des hérissons tchèques de la Ligne Siegfried.

Le ciment armé a été inventé par Joseph Monier qui en a déposé les brevets dès 1870. On peut citer aussi les barques de Lambot (1848) en ciment armé de 5 à 6 cm d'épaisseur et dont deux exemplaires existent toujours. On se reportera pour plus de précision au livre Joseph Monier et la naissance du ciment armé paru aux éditions du Linteau (Paris, 2001). L'inventeur officiel du béton armé est François Hennebique en 1886 qui l'utilisa pour la construction en 1899 du premier pont civil en béton armé de France, le pont Camille-de-Hogues à Châtellerault.

De façon intrinsèque, le béton de ciment possède une bonne résistance à la compression, mais une faible résistance à la traction. Aussi est-il nécessaire, lorsqu'un ouvrage en béton est prévu pour subir des sollicitations en traction ou en flexion (comme par exemple un plancher, un pont, une poutre...), d'y incorporer des armatures en acier destinées à s'opposer et à reprendre les efforts de traction. Les armatures mises en œuvre peuvent être soit en acier doux (l'acier doux est généralement lisse, il n'est plus guère utilisé aujourd'hui en béton armé que dans la confection des boucles de manutention prescellées pour son aptitude aux pliages-dépliages successifs sans perte de résistance) soit en acier haute-adhérence (aciers HA anciennement dénommés TOR) dont les caractéristiques mécaniques sont de l'ordre du double de celles des aciers doux.

Béton précontraint

Le béton possède des propriétés mécaniques intéressantes en compression alors que la résistance en traction est limitée et provoque rapidement sa fissuration et sa rupture. Ainsi le béton armé fissuré ne fait qu'enrober les armatures mais ne participe pas à la résistance. Il pèse presque inutilement... Lorsque les sollicitations deviennent très importantes, l'alourdissement de la section de béton armé devient prohibitif (en général au-delà de 25 m de portée pour une poutre). C'est ainsi qu'il devient intéressant de créer une compression initiale suffisante pour que le béton reste entièrement comprimé sous les sollicitations ; ainsi toute la section du béton participe à la résistance : c'est le principe du béton « précontraint ».

Le béton « précontraint » est une technique mise au point par Eugène Freyssinet en 1928 et testée sur des poteaux préfabriqués destinés au support de câbles électriques. Ultérieurement, le champ d'application du béton précontraint s'est considérablement élargi. Le béton précontraint convient aussi bien à des petites dalles préfabriquées qu'à des ouvrages de très grandes portées (100 mètres ou plus).

Lorsque le béton précontraint subit des sollicitations de signe opposé à la précontrainte, le béton se décomprime ; les variations de tensions dans les armatures sont quasiment négligeables compte tenu de la forte inertie de la section de béton rapportée à celles des aciers. En pratique, les règlements modernes (BPEL, Eurocodes) autorisent de légères décompressions du béton sensiblement dans la limite de sa résistance en traction. Les aciers utilisés pour la mise en compression du béton sont des câbles (à torons) ou des barres de très haute résistance à la rupture.

Selon que cette tension appliquée aux armatures est effectuée avant la prise complète du béton ou postérieurement à celle-ci, on distingue la précontrainte par « pré-tension » et la précontrainte par « post-tension ».

  • Dans la « pré-tension » (le plus souvent utilisée en bâtiment), les armatures sont mises en tension avant la prise du béton. Elles sont ensuite relâchées, mettant ainsi le béton en compression par simple effet d'adhérence. Cette technique ne permet pas d'atteindre des valeurs de précontrainte aussi élevées qu'en post-tension.
  • La « post-tension » consiste à disposer les câbles de précontrainte dans des gaines incorporées au béton. Après la prise du béton, les câbles sont tendus au moyen de vérins de manière à comprimer l'ouvrage au repos. Cette technique, relativement complexe, est généralement réservée aux grands ouvrages (ponts) puisqu'elle nécessite la mise en œuvre d'encombrantes « pièces d'about » (dispositifs mis en place de part et d'autre de l'ouvrage et permettant la mise en tension des câbles).

L'équilibre des efforts est obtenu par un tracé judicieux des câbles de précontrainte sur l'ensemble de la poutre ou de l'élément concerné de telle sorte que les sections de béton restent (quasiment) entièrement comprimées sous l'effet des différentes actions.

Par exemple, au milieu d'une poutre isostatique, à vide, la précontrainte sera conçue de telle sorte que la contrainte du béton soit maximale en fibre inférieure et minimale en fibre supérieure (dans ces conditions, une contre-flèche peut apparaître à vide). Une fois la poutre soumise à sa charge maximale, la précontrainte en fibre inférieure sera presque annulée par la tension de charge, alors que dans la partie supérieure la compression sera largement plus importante que dans une poutre en béton armé classique.

Autres techniques de renforcement

On peut améliorer la résistance mécanique (post-fissuration) du béton de différentes manières :

  • en y incorporant des fibres (dosages traditionnels de l'ordre de 600 à 1 200 g/m³). L'incorporation de celles-ci dans le béton rend ce dernier davantage ductile (moins fragile). Différents types de fibre peuvent être utilisés avec des propriétés spécifiques. C'est surtout le rapport entre la longueur et le diamètre des fibres (élancement) qui aura une influence sur les performances finales du béton fibré. On obtient ainsi un « béton fibré », souvent mis en œuvre par projection (tunnels) ou couramment utilisé pour les dallages industriels par exemple.
    Pour les applications architecturales ou quand la corrosion des armatures est potentiellement dangereuse, les composites ciment-verre (en), dits « CCV », sont utilisés depuis la fin des années 1970. Ils allient une matrice riche en ciment et des fibres de verre alcali résistantes (3 à 6% en poids total du mélange humide) et peuvent être préfabriqué en produits minces, donc légers[3],[4].
  • en y ajoutant une « poudre réactive » à structure fractale : les grains qui le composent ont tous la même taille, et accessoirement la propriété de présenter la même forme à différentes échelles (fractale). L'organisation optimale des granulats au sein du béton lui octroie de meilleures propriétés mécaniques. Il s'agit toutefois d'une technique toujours au stade expérimental.
  • en utilisant une « nappe de coffrage drainante » (ou « nappe de coffrage à perméabilité contrôlée »), pour améliorer les caractéristiques de la peau du béton par drainage de l'eau excédentaire (ce qui densifie le béton, le protégeant notamment mieux des chlorures qui en milieu marin accélèrent la corrosion des armatures). Le drainage se fait via une membrane drainante en géotextile interposée entre le béton et le coffrage. « Elle comprend deux faces ayant des fonctions distinctes : une face "drainante" qui collecte l’air et l’eau et permet leur évacuation à l’interface avec le coffrage et une face "filtrante" qui retient les particules fines (liant essentiellement) à la surface du béton »[5]. De l'eau est retenue dans la nappe de coffrage puis réabsorbée par le béton durant sa maturation[5].

Autres utilisations

Canoë de béton

L’invention du premier « bateau-ciment » par le Français Joseph Louis Lambot remonte à 1848. Dans les années 1970, aux États-Unis, a lieu la première compétition de canoës de béton. Depuis, près de 200 universités américaines participent chaque année à l’événement, et ce type de compétition s’est exporté dans de nombreux pays tels que la France depuis 2000, le Canada, l’Allemagne, le Japon ou encore l’Afrique du Sud.

Une course de canoës en béton aura d'ailleurs lieu le 21 et 22 avril 2012 dans la base nautique de Saint Laurent Blangy, dans le nord de la France. Cette course est organisée par l'école des Mines de Douai et sera ouverte au public. Les concurrents seront des écoles d'ingénieurs qui auront construit pendant l'année un canoë en béton.

Béton bitumineux

Le béton bitumineux (aussi appelé enrobé bitumineux) est composé de différentes fractions de gravillons, de sable, de filler et utilise le bitume comme liant. Il constitue généralement la couche supérieure des chaussées (couche de roulement). L'enrobé est fabriqué dans des usines appelées « centrales à enrobés », fixes ou mobiles, utilisant un procédé de fabrication continu ou par gâchées. Il est mis en œuvre à chaud (150 °C environ) à l'aide de machines appelées « finisseurs » qui permettent de le répandre en couches d'épaisseur désirée. L'effet de « prise » apparaît dès le refroidissement (< 90 °C), aussi est-il nécessaire de compacter le béton bitumineux avant refroidissement en le soumettant au passage répété des « rouleaux compacteurs ». Contrairement au béton de ciment, il est utilisable presque immédiatement après sa mise en œuvre.

Le bitume étant un dérivé pétrolier, le béton bitumineux est sensible aux hydrocarbures perdus par les automobiles. Dans les lieux exposés (stations services) on remplace le bitume par du goudron. Le tarmacadam des aérodromes est l'appellation commerciale d'un tel béton de goudron (rien à voir avec le macadam, dépourvu de liant).

Pratique industrielle du béton

La fabrication du béton

Le béton peut être confectionné dans une bétonnière mobile (électrique ou thermique) pour les petites quantités. Mais il est aussi fabriqué dans des centrale à béton. Si nous sommes en présence d'un chantier qui demande de grandes quantités, une centrale mobile est parfois installée directement sur le chantier; ce qui permet d'augmenter le débit de livraison au chantier. De plus, cela nécessite moins de camions malaxeurs pour le transport du béton étant donné que la distance parcourue est plus courte.

Il existe deux types de centrale à béton : chargement à sec (Dry-Batch) et le chargement pré-mélangé (Pré-Mix) . Le Dry-batch consiste à mélanger les agrégats et adjuvants chargés par convoyeurs directement dans la bétonnière. Cette méthode nécessite que la bétonnière malaxe pendant 5 minutes. Le Pré-Mix consiste à mélanger les agrégats et adjuvants dans un malaxeur dans l'usine pour ensuite le déverser dans la bétonnière qui est prête à faire sa livraison.

L’acheminement du béton

Camion-pompe à béton en action lors de travaux de rénovation d'un hôtel de Ploumanac'h, Perros-Guirec

Le mode, la durée et les conditions de l’acheminement du béton sont des éléments déterminants dans sa formulation. Ils ont chacun une influence particulière sur sa manœuvrabilité et sa qualité.

Le béton se transporte soit par des moyens manuels (seau, brouette...), soit, pour de grandes quantités, par des moyens mécaniques. Dans ce cas, il est généralement transporté depuis la centrale à béton par camions malaxeurs appelés « toupies » dont la capacité est de 4 m³ maximum pour un camion 4 x 2 ou 4 x 4, 6 m³ maximum pour un camion 6 x 4, 8 m³ maximum pour un camion 8 x 4, et 10 m³ pour un camion semi-remorque 2-essieux de 38 tonnes. Au Québec les capacités varient : 5 m³ pour un camion 10 roues, 7 à 8 m³ pour un camion 12 roues, 10 m³ pour un semi-remorque 2-essieux, et 13 m³ pour un semi-remorque 3-essieux.

Une fois sur le chantier, il est transvasé soit dans des bennes à béton (350 litres à 3 m³ et à volant ou à manchette) qui sont levées à la grue pour être ensuite vidées dans le coffrage, soit dans une pompe à béton qui est accouplée à un mât de distribution du béton. Certaines toupies sont aussi équipées d’un tapis convoyeur (standard, télescopique, avec une goulotte rotative en bout de tapis), pouvant aller jusqu'à 17 m.

Le béton peut aussi être projeté à l'aide d'un compresseur pneumatique, cette technique est très utilisée pour réparer des ouvrages en béton.

Le temps de prise du béton commence à partir du mélange et malaxage, à sa fabrication. Le transport entame donc ce temps et doit être le plus rapide possible pour préserver un maximum de manœuvrabilité du béton pendant sa mise en place. En général la durée moyenne pour le transport et la mise en œuvre du béton est de deux heures, au-delà de cette durée, les centrales à béton ne garantissent plus la qualité car le béton a déjà commencé à faire prise.

La température lors du transport est aussi importante. La rapidité de prise du béton est fortement influencée par la température ambiante. Lors du malaxage il est ainsi possible d'utiliser de l’eau froide par très grosses chaleurs et de l’eau chaude par temps froid. Certain camions sont également calorifugés

La mise en œuvre du béton

Coulage d'une dalle en béton

Les propriétés rhéologiques du béton à l'état frais peuvent permettre de distinguer différents types de béton :

  • béton vibré : nécessite une vibration (aiguille vibrante, banche vibrante ...) pour une bonne mise en place dans le coffrage ; chasser les "vides" et resserrer le matériau autour des armatures.
  • béton compacté au rouleau : béton très raide qui est mis en place à l'aide d'un rouleau compresseur (utilisé principalement pour les chaussées, les pistes d'atterrissage ou les barrages[6]);
  • béton projeté : béton raide mis en place par projection sur une surface verticale ou en surplomb (il existe deux techniques : la projection par voie humide et la projection par voie sèche) ;
  • béton pompé : béton fluide qui peut être acheminé sur plusieurs centaines de mètres à l'aide d'une pompe à béton ;
  • béton auto-plaçant et béton auto-nivelant : bétons très fluides qui ne nécessitent pas de vibration, la compaction s'effectuant par le seul effet gravitaire.

De façon courante, le béton est coulé dans un coffrage (moule à béton). Pendant son malaxage, son transport et sa mise en œuvre, le béton est brassé et de l’air reste emprisonné en lui. Il faut donc enfoncer des aiguilles vibrantes dans le béton pour faire remonter ces bulles d’air en surface. La vibration a aussi pour effet de couler plus facilement le béton dans le coffrage, de répartir ses agrégats et son liant autour des armatures et sur les faces et les angles qui seront visibles, de le rendre homogène mécaniquement et esthétiquement. Le béton est coulé par couches d’environ 30 cm pour la simple raison qu’un vibreur courant fait 30 cm de haut. Lorsque l’on enfonce un vibreur dans le béton, il faut atteindre la couche inférieure pour la marier avec la dernière couche sans poches jointives.

La cure du béton est importante au début de sa prise. Elle consiste à maintenir le béton dans un environnement propice à sa prise. Il faut éviter toute évaporation de l’eau contenue dans le béton (par temps chaud et/ou venteux), ce qui empêcherait la réaction chimique de prise de se faire et mettrait donc en cause la résistance du béton.

Il faut aussi éviter les chocs thermiques. La réaction exothermique du béton, éventuellement ajoutée à une forte chaleur ambiante fait que le béton pourrait « s’autocuire ». À l’inverse il faut protéger le béton du froid ambiant pour que la réaction chimique du béton s’amorce et qu’elle s’entretienne pendant un laps de temps minimum (jusqu’à 48 heures pour les bétons à prise lente). Dans le cas de grands froids, les coffrages sont isolés (laine de verre ou tentes chauffées) et doivent rester en place jusqu’à ce que le béton ait fait sa prise.

Le vieillissement du béton

Selon sa composition (alcali-réaction ou réaction sulfatique interne), ses additifs et selon les conditions de sa préparation (température, etc.) ou de son coulage ou selon les contraintes qu'il a subies (attaques chimiques, séismes, vibrations, chocs thermiques, etc.), le béton vieillit plus ou moins bien.

De nombreux tests et études portent sur la durabilité des bétons. En particulier, la caractérisation des matériaux par acoustique ultrasonore permet de détecter des changements structuraux du matériau.

Un des maux qui affectent le plus fréquemment le béton est sa carbonatation. Il s'agit d'une réaction chimique entre le CO2 de l'atmosphère et le ciment du béton, qui détruit son alcanilité et le rend acide. Lorsque l'acidité atteint les aciers d'armature, ceux-ci se corrodent et gonflent, ce qui fait éclater le béton les enrobant. Les armatures ne sont alors plus protégées et la résistance mécanique est compromise.

Recyclage du béton

Le béton peut être recyclé lors des chantiers de démolition : il est alors concassé, la ferraille en étant extraite par aimantation. Il peut être utilisé essentiellement dans la confection de remblais[1]. Les gravillons obtenus peuvent être aussi réincorporé dans du béton neuf dans des proportions variables (maximum de 5 % en France, tolérances plus élevées dans d'autres pays)[1]. Si cette proportion est trop importante, le béton résultant est moins solide[1].

Aspect d'un béton

Le béton peut être teinté dans la masse en y incorporant des pigments naturels ou des oxydes métalliques. Il peut aussi être traité à l'aide d'adjuvants pour être rendu hydrofuge (il devient alors étanche, empêchant les remontées capillaires). L'ajout de différents matériaux (fibres textiles, copeaux de bois, matières plastiques...) permet de modifier ses propriétés physiques. Son parement pouvant être lissé ou travaillé, le béton de ciment est parfois laissé apparent (« brut de décoffrage ») pour son aspect minimaliste, brut et moderne.

Le béton utilisé en revêtement de grandes surfaces (esplanades, places publiques...) est souvent désactivé : on procède en pulvérisant, à la surface du béton fraîchement posé, un produit désactivant qui neutralise sa prise. Un rinçage à haute pression permet alors, après élimination de la laitance, de faire apparaître, en surface, les divers gravillons constitutifs.

Moulé ou « banché » (c'est-à-dire coulé dans une banche : un moule démontable mis en place sur le chantier et démonté après la prise), le béton peut prendre toutes les formes. Cette technique a permis aux architectes de construire des bâtiments avec des formes courbes. Elle permet aussi de réaliser les tunnels.

En technique routière, le béton extrudé, mis en œuvre à l'aide de coffrages glissants, permet de réaliser des murets de sécurité, des bordures et des dispositifs de retenue sur des linéaires importants.

Données techniques

Énergie grise

Article détaillé : Énergie grise.
  • parpaing : 410 kWh/m³
  • béton armé : 1 850 kWh/m³

Classes de résistance

En application de la norme[7], les bétons de masse volumique normale et les bétons lourds sont classés selon leur résistance à la compression, ce classement[8] est de la forme Cx/y.

  • x désigne la résistance caractéristique exigée à 28 jours, mesurée sur des cylindres[9] de 150 mm de diamètre sur 300 mm de haut ;
  • y désigne la résistance caractéristique exigée à 28 jours, mesurée sur des cubes de 150 mm de côté.

La résistance caractéristique est définie par la norme comme étant la valeur de résistance en dessous de laquelle peuvent se situer 5 % de la population de tous les résultats des mesures de résistance possibles effectués pour le volume de béton considéré (fractile de 5 %). Cette résistance caractéristique, une pression, est exprimée en MPa ou en N/mm².

Les classes de résistance normalisées sont C8/10, C12/15, C16/20, C20/25, C25/30, C30/37, C35/45, C40/50, C45/55, C50/60, C55/67, C60/75, C70/85, C80/95, C90/105 et C100/115.

Pour les bétons légers le classement est de la forme[10] LCx/y (art. 4.3.1 tableau 8), les classes de résistance normalisées sont LC8/9, LC12/13, LC16/18, LC20/22, LC25/28, LC30/33, LC35/38, LC40/44, LC45/50, LC50/55, LC55/60, LC60/66, LC70/77 et LC80/88.

Importance économique

Avec une production annuelle de cinq milliards de mètres cube, il est le matériau le plus consommé au monde (selon les pays, 5 à 10 fois la consommation de métaux, 10 à 30 fois celle de carton ou plastique)[11]

En France

Selon les relevés d’enquête de FIB-UNICEM[12], pour 2005 :

  • le béton prêt à l’emploi représente :
39 365 800 m³ vendus, pour 3 365 407 000 euros dont 3 048 000 euros à l’exportation.
dans 542 entreprises ou sections d’entreprises, par 7 914 salariés (dont 4 310 cadres & ETAM), effectuant 6 164 000 heures de travail, pour une masse salariale brute (hors cotisations sociales) de 206 749 000 euros.
  • la fabrication de produits en béton représente en 2008 :
29 829 000 tonnes vendues, pour 3 146 757 000 euros.
dans 708 entreprises ou sections d’entreprises, par 20 526 salariés (dont 6 077 cadres et ETAM), effectuant 23 003 000 heures de travail, pour une masse salariale brute (hors cotisations) de 535 769 000 euros.
  • la fabrication de supports en béton armé représente :
120 700 tonnes vendues, pour 34 045 000 euros.
dans 9 entreprises ou sections d’entreprises, par 260 salariés (dont 131 cadres & ETAM), effectuant 225 000 heures de travail, pour une masse salariale brute (hors cotisations) de 6 866 000 euros.

Recherche et développement

  • 2007 à l'université de Leeds, John Forth et son équipe ont mis au point le « bitublock ». À base de 95 % de verre brisé, ferrailles et cendres, ce block serait six fois plus résistant que le béton classique.

Notes et références

  1. a, b, c et d Cudeville A, Recycler le béton, Pour la Science, octobre 2011, p 17-18
  2. Thierry KUBWIMANA, Nicolas BOURNETON, Nicolas ROUXEL, Aldéric HAUCHECORNE Utilisation des bétons fibrés à ultrahautes performances en site portuaire (pp. 685-692) DOI:10.5150/jngcgc.2010.079-K (Lire en ligne)
  3. P. Faucon, « Les composites ciment verre : Un matériau pour accéder à de nouveaux marchés », dans Congrès international du béton manufacturé No5, Paris, Fédération de l'industrie du béton, 1996, 560 p. [présentation en ligne], p. II.59-II.71 
  4. Thierry Lucas, « Les composites ciment-verre s'immiscent dans le B-TP », dans L'Usine nouvelle, no 2970, 30 juin 2005 [texte intégral (page consultée le 25 novembre 2010)] 
  5. a et b Benoit Thauvin, Nicolas Rouxel, Stéphane Pasquiet, Évaluation du gain de durabilité apporté par l'utilisation d'un procédé de nappe de coffrage drainante pour un béton en site maritime (pp. 771-782) DOI:10.5150/jngcgc.2010.086-T ([1])
  6. Barrage de Petit-saut
  7. Norme NF EN 206-1 Béton Partie 1 : Spécification, performances, production et conformité. Cette norme n'est pas librement accessible sur l'internet mais vendue par l'AFNOR
  8. NF EN 206-1, art. 4.3.1 tableau 7
  9. Avant l'homologation de la norme NF EN 206-1, les éprouvettes cylindriques, couramment utilisées en France, avaient comme dimensions 16 cm de diamètre sur 32 cm de haut. À partir de la norme NF EN 206-1, ces cylindres doivent avoir des dimensions conformes à la norme NF EN 12390-1 (Essai pour béton durci Partie 1 : Forme, dimensions et autres exigences relatives aux éprouvettes et aux moules), soit 150 mm de diamètre sur 300 mm de haut.
  10. C comme Concrete et LC comme Light Concrete
  11. conférence de Paul Acker à l'Université de tous les Savoirs, 01/10/2000
  12. Site de l'UNICEM

Bibliographie

  • Sous la direction de Jean-Pierre Ollivier et Angélique Vichot pour l'ATILH - La durabilité du béton - Presses de l'école des Ponts et Chaussées - Paris - 2008 (ISBN 978-2-8597-8434-8)

Annexes

Sur les autres projets Wikimedia :

Articles connexes

Liens externes


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Béton de Wikipédia en français (auteurs)

Игры ⚽ Нужна курсовая?

Regardez d'autres dictionnaires:

  • béton — béton …   Dictionnaire des rimes

  • BÉTON — Le béton est aujourd’hui le matériau de construction par excellence. Environ 4 milliards de mètres cubes de béton sont utilisés tous les ans de par le monde pour la construction d’ouvrages de toutes natures, notamment de bâtiments, d’immeubles… …   Encyclopédie Universelle

  • Beton — ist im allgemeinen ein aus einem Bindemittel mit Zuschlägen von Sand, Kies und Steinschlag bestehendes Baumaterial, das in mehr oder weniger plastischer Form an dem Ort seiner Bestimmung zwischen feststehenden Schalungen oder sonstigen, seine… …   Lexikon der gesamten Technik

  • beton — BETÓN s.n. 1. Amestec de pietriş, nisip, ciment (sau asfalt, var hidraulic etc.) şi apă, care se transformă prin uscare într o masă foarte rezistentă şi se foloseşte în construcţii. ♢ Beton armat = amestecul descris mai sus, turnat peste o… …   Dicționar Român

  • béton — 1. (bé ton) s. m. Mortier fait de chaux, de sable et de gravier. HISTORIQUE    XIVe s. •   Qui ont mis aucuns fumiers, terres et autres betuns ez place de la ville de Dijon, DU CANGE betunium..    XVe s. •   Un tombereau chargié de gravois et… …   Dictionnaire de la Langue Française d'Émile Littré

  • beton — bètōn m <G betóna> DEFINICIJA 1. tvrdi materijal za gradnju, smjesa cementa, pijeska, šljunka i vode 2. žarg. istodobno pijenje viskija i piva, ob. izaziva teško pijanstvo SINTAGMA armirani beton beton ojačan željeznim šipkama ili željeznom …   Hrvatski jezični portal

  • Beton — (concrete; béton; calcestruzzo). Beton ist ein mehr oder minder grobkörniges Gemenge von Steinstücken, dessen Zwischenräume durch zunächst plastischen, später erhärtenden Mörtel ausgefüllt werden. Die Bestandteile des B., d.s. Bindemittel und… …   Enzyklopädie des Eisenbahnwesens

  • beton — I {{/stl 13}}{{stl 8}}rz. mnż I, D. u, Mc. betonnie {{/stl 8}}{{stl 7}} mieszanina cementu, wody i kruszywa, tworząca po związaniu twardą masę : {{/stl 7}}{{stl 10}}Lać beton do szalunków. Fundamenty z betonu. <fr.> {{/stl 10}}{{stl 20}}… …   Langenscheidt Polski wyjaśnień

  • Beton — Sm std. (18. Jh.) Entlehnung. Entlehnt aus frz. béton, dieses aus l. bitūmen n. Erdharz, Bergteer . Direkt aus dem Lateinischen stammt das Wort Bitumen. Verb: betonieren.    Ebenso nndl. beton, nschw. betong, nnorw. betong. ✎ Röhrich 1 (1991),… …   Etymologisches Wörterbuch der deutschen sprache

  • Beton — (franz. béton, spr. tóng, Steinmörtel, Grobmörtel, Konkret), aus Steinbrocken, Kies, Sand und Kalk oder Zement und Wasser bereitetes Gemenge zur Herstellung selbständiger Mauerkörper, zu Grundschichten, Fußböden, Gewölben etc. Je größer der… …   Meyers Großes Konversations-Lexikon

  • bètōn — m 〈G betóna〉 1. {{001f}}tvrdi materijal za gradnju; smjesa cementa, pijeska, šljunka i vode 2. {{001f}}žarg. istodobno pijenje viskija i piva, ob. izaziva teško pijanstvo ∆ {{001f}}armirani ∼ beton ojačan željeznim šipkama ili željeznom mrežom ✧… …   Veliki rječnik hrvatskoga jezika

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”