Représentation conjuguée


Représentation conjuguée
Page d'aide sur l'homonymie Pour les articles homonymes, voir Conjugaison (homonymie).

En algèbre, si ρ est une représentation de groupe ou une représentation d'algèbre de Lie sur un espace vectoriel complexe V, on définit sa représentation conjuguée ρ sur le conjugué V de V.

  • Si ρ est une représentation d'un groupe G, alors ρ est la représentation de G définie par :
    pour tout élément g de G, ρ(g) est l'application linéaire conjuguée de ρ(g).
    Pour une représentation unitaire (en), la représentation conjuguée est équivalente à la représentation duale.
  • De même, si ρ est une représentation d'une algèbre de Lie réelle \mathfrak g, alors ρ est la représentation de \mathfrak g définie par :
    pour tout élément u de \mathfrak g, ρ(u) est l'application linéaire conjuguée de ρ(u)[1].
    Si \mathfrak{g} est une algèbre de Lie (complexe) involutive (i.e. munie d'une involution * compatible avec le crochet de Lie), alors
    pour tout élément u de \mathfrak g, ρ(u) est le conjugué de -ρ(u*).

Notes et références

(en) Cet article est partiellement ou en totalité issu de l’article en anglais intitulé « Complex conjugate representation » (voir la liste des auteurs)

  1. C'est la convention des mathématiciens. Les physiciens, qui utilisent des conventions différentes dans lesquelles le crochet de Lie de deux vecteurs réels est un vecteur imaginaire pur, insèrent un signe « - » dans la définition.

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Représentation conjuguée de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Representation induite d'un groupe fini — Représentation induite d un groupe fini En mathématiques une représentation induite est une méthode de construction d une représentation d un groupe. Cet article traite le cas des groupes finis. Une représentation induite permet de construire à l …   Wikipédia en Français

  • Représentation duale — Pour les articles homonymes, voir Dualité (mathématiques) et Dualité. En algèbre, si ρ est une représentation de groupe ou une représentation d algèbre de Lie sur un espace vectoriel V, on définit sa représentation duale ou représentation… …   Wikipédia en Français

  • Representation reguliere — Représentation régulière En mathématiques et plus précisément en théorie des groupes, la représentation régulière est une représentation d un groupe fini. Soient G un groupe fini d ordre g, K un corps, V un K espace vectoriel de dimension g et… …   Wikipédia en Français

  • Représentation des groupes finis — Représentations d un groupe fini En mathématiques, un groupe est une structure algébrique dont la définition est remarquablement simple. Elle consiste en un ensemble muni d une unique opération. Cette opération possède de bonnes propriétés, elle… …   Wikipédia en Français

  • Représentation de Dirac — Matrice de Dirac Les matrices de Dirac sont des matrices qui furent introduites par Paul Dirac, lors de la recherche d une équation d onde relativiste de l électron. Sommaire 1 Intérêt 2 Matrices de Dirac 3 Le slash de Feynman …   Wikipédia en Français

  • Représentation de Majorana — Matrice de Dirac Les matrices de Dirac sont des matrices qui furent introduites par Paul Dirac, lors de la recherche d une équation d onde relativiste de l électron. Sommaire 1 Intérêt 2 Matrices de Dirac 3 Le slash de Feynman …   Wikipédia en Français

  • Représentation de Weyl — Matrice de Dirac Les matrices de Dirac sont des matrices qui furent introduites par Paul Dirac, lors de la recherche d une équation d onde relativiste de l électron. Sommaire 1 Intérêt 2 Matrices de Dirac 3 Le slash de Feynman …   Wikipédia en Français

  • Représentation des matrices de Dirac — Matrice de Dirac Les matrices de Dirac sont des matrices qui furent introduites par Paul Dirac, lors de la recherche d une équation d onde relativiste de l électron. Sommaire 1 Intérêt 2 Matrices de Dirac 3 Le slash de Feynman …   Wikipédia en Français

  • Caractere d'une representation d'un groupe fini — Caractère d une représentation d un groupe fini Fichier:Ferdinand Georg Frobenius.jpg Ferdinand Georg Frobenius fondateur de la théorie des caractères En mathématiques le caractère d une représentation d un groupes finis est un outil utilisé pour …   Wikipédia en Français

  • Caractère D'une Représentation D'un Groupe Fini — Fichier:Ferdinand Georg Frobenius.jpg Ferdinand Georg Frobenius fondateur de la théorie des caractères En mathématiques le caractère d une représentation d un groupes finis est un outil utilisé pour analyser les représentations d un groupe fini.… …   Wikipédia en Français