Module injectif


Module injectif

En mathématiques, un module injectif est un module Q (à gauche par exemple) sur un anneau A tel que pour tout morphisme injectif f : XY entre deux A-modules (à gauche) et pour tout morphisme g : XQ, il existe un morphisme h : YQ tel que hf = g, c'est-à-dire tel que le diagramme suivant commute :

Injective module.png

Autrement dit : Q est injectif si pour tout module Y, tout morphisme d'un sous-module de Y vers Q s'étend à Y.

Les A-modules injectifs sont les objets injectifs (en) de la catégorie abélienne des A-modules : Q est injectif si et seulement si le foncteur Hom( ,Q) (contravariant, exact à gauche) est exact (en).

est un -module injectif, autrement dit un groupe abélien divisible.

Plus généralement, si A est un anneau intègre :

Article connexe

Module projectif


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Module injectif de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Module semi-simple — Camille Jordan, auteur du théorème clé de la théorie En mathématiques et plus précisément en algèbre non commutative, un module sur un anneau est dit semi simple ou complètement réductible s il est somme directe de sous modules simples ou, ce qui …   Wikipédia en Français

  • Module fidèle — Un module M sur un anneau A est dit fidèle si son annulateur est réduit à {0}, en d autres termes, si l action de chaque est non triviale ( pour un certain ). Autrement dit, un module est fidèle si la représentation associée est injective. À… …   Wikipédia en Français

  • Module sur un anneau — En mathématiques, au sein des structures algébriques, « un module est à un anneau ce qu un espace vectoriel est à un corps »[1] : pour un espace vectoriel, l ensemble des scalaires forme un corps tandis que pour un module, cet… …   Wikipédia en Français

  • Module libre — En algèbre, un module libre est un module M qui possède une base B, c est à dire un sous ensemble de M tel que tout élément de M s écrive de façon unique comme combinaison linéaire (finie) d éléments de B. Sommaire 1 Définitions 2 Exemples et… …   Wikipédia en Français

  • Module artinien — En théorie des anneaux, un module artinien (du nom d Emil Artin) est un module vérifiant la condition des chaines décroissantes. C est une sorte de généralisation des espaces vectoriels de dimension finie. Sommaire 1 Définition 2 Exemples 3… …   Wikipédia en Français

  • Module monogène — Un module monogène est un module qui peut être engendré par un seul élément, par exemple est engendré par 1. v · Théorie des anneaux Anneau unitaire • Anneau commutatif • Corps des fractions • Idéal • …   Wikipédia en Français

  • Module projectif — En mathématiques, un module projectif est un module P (à gauche par exemple) sur un anneau A tel que pour tout morphisme surjectif f : N → M entre deux A modules (à gauche) et pour tout morphisme g : P → M, il existe un morphisme… …   Wikipédia en Français

  • Module Semi-Simple — Camille Jordan, auteur du théorème clé de la théorie En mathématiques et plus particulièrement en algèbre, un A module où A désigne un anneau est qualifié de semi simple ou de complètement réductible si et seulement s il est somme directe de… …   Wikipédia en Français

  • Module Fidèle — Un module M sur un anneau A e est dit fidèle si son annulateur est réduit à {0}, en d autres termes, si l action de chaque est non triviale ( pour un certain ). Autrement dit, un module est fidèle si la représentation associée est injective. À… …   Wikipédia en Français

  • Module fidele — Module fidèle Un module M sur un anneau A e est dit fidèle si son annulateur est réduit à {0}, en d autres termes, si l action de chaque est non triviale ( pour un certain ). Autrement dit, un module est fidèle si la représentation associée est… …   Wikipédia en Français