Théorème des Croissances Comparées


Théorème des Croissances Comparées

Théorème des Croissances Comparées

Icone math élém.jpg
Cet article fait partie de la série
Mathématiques élémentaires
Algèbre
Logique
Arithmétique
Probabilités
Statistiques

Le théorème des Croissances comparées est constitué de quelques résultats de limites de fonctions qui seraient qualifiées de 'formes indéterminées' par la méthode usuelle.

Sommaire

Énoncé des résultats

\lim_{x \to +\infty} \frac{e^x}{x} = +\infty
\lim_{x \to -\infty} x\,e^x = 0
\lim_{x \to 0+} x\,\ln(x) = 0
\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0

Démonstrations

  • \lim_{x \to \infty} \frac{e^x}{x} = \infty

On sait que (voir ci-après): \forall x\geqslant 1,\ e^x\geqslant x^2

On a alors: \forall x\geqslant 1, \frac{e^x}{x}\geqslant x

Par le théorème des gendarmes, on a le résultat voulu.

Preuve de \forall x\geqslant 1,\ e^x\geqslant x^2:

Soit \begin{align}f\ : & \ [1;+\infty]\to \mathbb{R} \\ \ & \qquad \quad x \mapsto e^x-x^2 \end{align}

\forall x\geqslant 1,\ f'(x)=e^x-2x \qquad f''(x)=e^x-2

\forall x\geqslant 1,\ e^x \geqslant 2 \quad \Rightarrow f''(x) \geqslant 0 \quad \Rightarrow f'\ est\ croissante\ sur\ [1;+\infty]

Or\ f'(1)=e-2\geqslant 0 \qquad \Rightarrow f\ est\ croissante\ sur\ [1;+\infty]

Or\ f(1)=e-1\geqslant 0 \qquad \Rightarrow \forall x \geqslant 1,\ f(x) \geqslant 0

D'où le résultat voulu.


  • \lim_{x \to -\infty} x\,e^x = 0

\lim_{x \to -\infty} x\,e^x = \lim_{x \to +\infty} -x\,e^{-x} = \lim_{x \to +\infty} \frac{-x}{e^x} = \lim_{x \to +\infty} \frac{1}{\frac{e^x}{-x}} = 0

  • \lim_{x \to +\infty} \frac{ln(x)}{x} = 0

De la même manière, on utilise le résultat (montré par l'analyse de la fonction f(x)=ln(x)-sqrt(x) ): \forall x\geqslant 1,\ ln(x)\leqslant \sqrt x \qquad \Rightarrow \frac{ln(x)}{x}\leqslant \frac{1}{\sqrt x}

Par le théorème des gendarmes, on a le résultat voulu.

  • \lim_{x \to 0+} x\,ln(x) = 0

0 = \lim_{x \to +\infty} \frac{ln(x)}{x} = \lim_{x \to 0} x\,ln(1/x) = \lim_{x \to 0} -x\,ln(x)

Résultats généralisés

\forall n\in\mathbb{R},\ \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty


\forall n\in\mathbb{Z},\ \lim_{x \to -\infty} x^n\,e^x = 0

Démonstrations

  • \forall n\in\mathbb{R},\ \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty

Si n<0, le résultat est évident. Supposons 0<n<1 \forall x>1,\ x^n\le x\quad \Rightarrow \frac{1}{x^n}\ge \frac{1}{x}\quad \Rightarrow \frac{e^x}{x^n}\ge \frac{e^x}{x} d'où le résultat par le théorème des gendarmes.

Si n>1, \forall x\geqslant 1,\ {\left( \frac{e^x}{x} \right)}^n = \frac{e^{n\,x}}{x^n};\ en\ posant\ X=n\,x,\ on\ a\ {\left( \frac{e^x}{x} \right)}^n = \frac{n^n\,e^X}{X^n}

On peut alors appliquer le résultat de base.

Voir aussi

Limites de référence

Limite (mathématiques élémentaires)

Ce document provient de « Th%C3%A9or%C3%A8me des Croissances Compar%C3%A9es ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Théorème des Croissances Comparées de Wikipédia en français (auteurs)