Symbole de Schlafli


Symbole de Schlafli

Symbole de Schläfli

En mathématiques, le symbole de Schläfli est une notation de la forme {p,q,r, ...} qui permet de définir les polyèdres réguliers et les tessellations. Cette notation donne un résumé de certaines propriétés importantes d'un polytope rectangulaire particulier.

Le symbole de Schläfli fut nommé ainsi en l'honneur du mathématicien du XIXe siècle Ludwig Schläfli qui fit d'importantes contributions en géométrie et dans d'autres domaines.

Article détaillé : polyèdre régulier.

Sommaire

Les polygones réguliers (plan)

Le symbole de Schläfli pour un polygone régulier convexe à n cotés est {n}. Par exemple, un pentagone régulier est représenté par {5}.

Pour représenter des polygones étoilés, les fractions sont utilisées. Ainsi le pentagramme, qui est le pentagone étoilé, est représenté par {5/2}, ce qui signifie que ce polyèdre possède 5 arêtes et que chacune de ces arêtes relie les sommets de numéro s et s + 2. Ainsi la première arête relie le premier et le troisième sommet, la deuxième le troisième et le cinquième, ...

Les polyèdres réguliers (3-espace)

Le symbole de Schläfli d'un polyèdre régulier est {p,q} si ses faces sont des p-gones, et chaque sommet est entouré par q faces (la figure de sommet est un q-gone).

Par exemple {5,3} est le dodécaèdre régulier. Il possède des faces pentagonales, et trois pentagones autour de chaque sommet.

Voir les 5 solides de Platon, les 4 solides de Kepler-Poinsot.

Les symboles de Schläfli peuvent aussi être définis pour les pavages réguliers des espaces euclidiens ou hyperboliques d'une manière similaire.

Par exemple, le pavage hexagonal est représenté par {6,3}. Il est en effet formé d'hexagones et chacun de ces hexagones est entouré par trois autres.

Les polychores réguliers (4-espace)

Le symbole de Schläfli pour un polychore régulier est de la forme {p,q,r}. Il possède {p} faces polygonales régulières, {p,q} cellules, {q,r} figures de sommet polyèdriques régulières et {r} figures d'arêtes polygonales régulières.

Voir les six polychores réguliers convexes et les dix non-convexes.

Par exemple, le 120-cellules est représenté par {5,3,3}. Il est construit par des cellules dodécaèdriques {5,3}, et possède 3 cellules autour de chaque arêtes.

Il existe aussi un pavage régulier du 3-espace euclidien : le nid d'abeille cubique, avec un symbole de Schläfli de {4,3,4}, fait de cellules cubiques, et 4 cubes autour de chaque sommet.

Il existe aussi 4 pavages réguliers hyperboliques incluant {5,3,4}, le petit nid d'abeille dodécaèdrique hyperbolique, qui remplit l'espace avec des cellules dodécaèdriques.

Les dimensions plus élevées

Pour les polytopes de dimensions plus élevées, le symbole de Schläfli est défini par récurrence comme : {p_1, p_2, ..., p_{n-1}}\, si les facettes ont un symbole de Schläfli {p_1, p_2, ..., p_{n-2}}\, et les figures de sommet : {p_2, p_3, ..., p_{n-1}}\,.

Il existe seulement 3 polytopes réguliers en 5 dimensions et au-dessus : le simplexe, {3,3,3,...,3}; le polytope croisé, {3,3, ... ,3,4}; et l'hypercube, {4,3,3,...,3}. Il n'existe pas de polytopes réguliers non-convexes au-dessus de 4 dimensions.

Les polytopes duaux

Pour la dimension 2 ou au-dessus, chaque polytope possède un dual.

Si un polytope possède un symbole de Schläfli {{p_1, p_2, p_3, ..., p_{n-1}}\,} alors son dual possède un symbole de Schläfli {{p_{n-1}, ..., p_3, p_2, p_1}\,}.

Si la suite est la même vers la gauche et vers la droite, le polytope est auto-dual. Chaque polytope régulier en 2 dimensions (polygone) est auto-dual, chaque simplexe est autodual, chaque pyramide de dimension 3 est autoduale, et le 24-cellules est autodual.

Les formes prismatiques

Les polytopes prismatiques peuvent être définis et nommés comme un produit cartésien de polytopes de dimensions inférieures :

  • Un prisme p-gonal, avec une figure de sommet p.4.4 comme \begin{Bmatrix}\ \end{Bmatrix} \times \begin{Bmatrix} p \end{Bmatrix}.
  • Un hyperprisme uniforme {p,q}-èdrique comme \begin{Bmatrix}\ \end{Bmatrix} \times \begin{Bmatrix} p,q \end{Bmatrix}.
  • Un duoprisme uniforme p-q comme \begin{Bmatrix} p \end{Bmatrix} \times \begin{Bmatrix} q \end{Bmatrix}.

Un prisme peut aussi être représenté comme la troncature d'un hosoèdre comme t\begin{Bmatrix} 2,p \end{Bmatrix}.

Les symboles de Schläfli étendus pour les polytopes uniformes

Les polytopes uniformes, construits à partir d'une construction de Wythoff, sont représentés par une notation de troncature étendue à partir d'une forme régulière {p,q,...}. Il existe un quantité de formes parallèles symboliques qui référencent les éléments du symbole de Schläfli, discutées par dimensions ci-dessous.

Les polyèdres uniformes et les pavages

Pour les polyèdres, un symbole de Schläfli étendu est utilisé dans l'article de 1954 par Coxeter énumérant l'article intitulé polyèdres uniformes.

Chaque polyèdre régulier ou pavage {p,q} possède 7 formes, incluant la forme régulière et son dual, correspondant aux positions dans le triangle rectangle fondamental. Un huitième forme spéciale, les adoucis, correspondent à une alternance de la forme omnitronquée.

Par exemple, t{3,3} signifie simplement un tétraèdre tronqué.

Une deuxième notation, plus générale, aussi utilisée par Coxeter, s'applique à toutes les dimensions, et est précisée par un t suivit d'une liste d'indices correspondant aux miroirs de construction de Wythoff (ils correspondent aussi aux noeuds annelés dans un diagramme de Coxeter-Dynkin).

Par exemple, le cube tronqué peut être représenté par t0,1{4,3} et il peut être regardé comme à mi-chemin entre le cube, t0{4,3} et le cuboctaèdre, t1{4,3}.

Dans chacun, un nom désignant l'opération de la construction de Wythoff est donné en premier lieu. En deuxième lieu, certains ont une terminologie alternative (donnée entre parenthèses) s'appliquant seulement pour une dimension donnée. Précisément, l'omnitroncature et le développement, les relations duales s'appliquant différemment dans chaque dimension.


Opération Symboles
de Schläfli
étendus
Diagramme
de Coxeter-
Dynkin
Symbole
de Wythoff
Parent \begin{Bmatrix} p , q \end{Bmatrix} t0{p,q} Fichier:Dynkins-100.png q | 2 p

(Quasi-régulier)
\begin{Bmatrix} p \\ q \end{Bmatrix} t1{p,q} Fichier:Dynkins-010.png 2 | p q
Birectifié
(ou dual)
\begin{Bmatrix} q , p \end{Bmatrix} t2{p,q} Fichier:Dynkins-001.png p | 2 q
Tronqué t\begin{Bmatrix} p , q \end{Bmatrix} t0,1{p,q} Fichier:Dynkins-110.png 2 q | p
Bitronqué
(ou dual tronqué)
t\begin{Bmatrix} q , p \end{Bmatrix} t2,3{p,q} Fichier:Dynkins-011.png 2 p | q
Biseauté
(ou développé)
r\begin{Bmatrix} p \\ q \end{Bmatrix} t0,2{p,q} Fichier:Dynkins-101.png p q | 2
Biseauté-tronqué
(ou omnitronqué)
t\begin{Bmatrix} p \\ q \end{Bmatrix} t0,1,2{p,q} Fichier:Dynkins-111.png 2 p q |
Adouci s\begin{Bmatrix} p \\ q \end{Bmatrix} s{p,q} Fichier:Dynkins-sss.png | 2 p q

Les polychores uniformes et les nids d'abeille

Il existe au plus 15 formes tronquées pour les polychores et les nids d'abeille basés sur chaque forme régulière {p,q,r}.

Voir les articles polychore et nid d'abeille uniforme convexe.

La notation avec le t en indice est parallèle au diagramme de Coxeter-Dynkin graphique, dont chaque noeud graphique représente les 4 hyperplans des réflexions miroirs dans le domaine fondamental.

Opération Symboles
de Schläfli
étendus
Diagramme
de Coxeter-
Dynkin
Parent t0{p,q,r} Fichier:Dynkins-1000.png
t1{p,q,r} Fichier:Dynkins-0100.png
Birectifié
(ou dual rectifié)
t2{p,q,r} Fichier:Dynkins-0010.png
Trirectifié
(ou dual)
t3{p,q,r} Fichier:Dynkins-0001.png
Tronqué t0,1{p,q,r} Fichier:Dynkins-1100.png
Bitronqué t1,2{p,q,r} Fichier:Dynkins-0110.png
Tritronqué
(ou dual tronqué)
t2,3{p,q,r} Fichier:Dynkins-0011.png
biseauté t0,2{p,q,r} Fichier:Dynkins-1010.png
Bi-biseauté
(ou dual biseauté)
t1,3{p,q,r} Fichier:Dynkins-0101.png
Développé) t0,3{p,q,r} Fichier:Dynkins-1001.png
Biseauté-tronqué t0,1,2{p,q,r} Fichier:Dynkins-1110.png
Bi-biseauté-tronqué
(ou dual biseauté-tronqué)
t1,2,3{p,q,r} Fichier:Dynkins-0111.png
Développé t0,1,3{p,q,r} Fichier:Dynkins-1101.png
Développé-biseauté
(ou dual développé-tronqué)
t0,2,3{p,q,r} Fichier:Dynkins-1011.png
Développé-biseauté-tronqué
(ou omnitronqué)
t0,1,2,3{p,q,r} Fichier:Dynkins-1111.png

Références

  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications ISBN 978-0-486-40919-1 (Chapter 3: Wythoff's construction for uniform polytopes, p41-53)
  • Johnson, N.W. Uniform Polytopes, Manuscript (1991)
  • Johnson, N.W. The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • Coxeter, H.S.M.; Regular Polytopes, (Methuen and Co., 1948). (pp. 14, 69, 149)
  • Coxeter, Longuet-Higgins, Miller, Uniform polyhedra, Phil. Trans. 1954, 246 A, 401-50. (Extended Schläfli notation defined: Table 1: p 403)

Liens externes


Solides géométriques
Les polyèdres
Les solides de Platon
Tétraèdre - Cube - Octaèdre - Icosaèdre - Dodécaèdre
Les solides d'Archimède
Tétraèdre tronqué - Cube tronqué - Octaèdre tronqué - Dodécaèdre tronqué - Icosaèdre tronqué - Cuboctaèdre - Cube adouci - Icosidodécaèdre - Dodécaèdre adouci - Petit rhombicuboctaèdre - Grand rhombicuboctaèdre - Petit rhombicosidodécaèdre - Grand rhombicosidodécaèdre
Les solides de Kepler-Poinsot
Petit dodécaèdre étoilé - Grand dodécaèdre étoilé - Grand dodécaèdre - Grand icosaèdre
Les solides de Catalan
Triakioctaèdre - Tétrakihexaèdre - Triakitétraèdre - Pentakidodécaèdre - Triaki-icosaèdre - Dodécaèdre rhombique - Icositétraèdre pentagonal - Triacontaèdre rhombique - Hexacontaèdre pentagonal - Icositétraèdre trapézoïdal - Hexakioctaèdre - Hexacontaèdre trapézoïdal - Hexaki icosaèdre
Les solides de Johnson
Les solides de révolution
Boule - Cylindre de révolution - Cône de révolution - Tore - Paraboloïde de révolution
  • Portail de la géométrie Portail de la géométrie
Ce document provient de « Symbole de Schl%C3%A4fli ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Symbole de Schlafli de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Symbole de schläfli — En mathématiques, le symbole de Schläfli est une notation de la forme {p,q,r, ...} qui permet de définir les polyèdres réguliers et les tessellations. Cette notation donne un résumé de certaines propriétés importantes d un polytope rectangulaire… …   Wikipédia en Français

  • Symbole de Schläfli — En mathématiques, le symbole de Schläfli est une notation de la forme {p,q,r, …} qui permet de définir les polyèdres réguliers et les tessellations. Cette notation donne un résumé de certaines propriétés importantes d un polytope régulier… …   Wikipédia en Français

  • Symbole de wythoff — Exemple des triangles de construction de Wythoff avec les 7 points générateurs. Les droites des miroirs actifs sont colorés en rouge, jaune et bleu avec les 3 noeuds qui leur sont opposés associés par le symbole de Wythoff. En géométrie, un… …   Wikipédia en Français

  • Symbole de Wythoff — Exemple des triangles de construction de Wythoff avec les 7 points générateurs. Les droites des miroirs actifs sont colorés en rouge, jaune et bleu avec les 3 noeuds qui leur sont opposés associés par le symbole de Wythoff. En géométrie, un… …   Wikipédia en Français

  • Schläfli — Ludwig Schläfli Ludwig Schläfli Ludwig Schläfli (15 janvier, 1814 à Grasswyl – 20 mars 1895 à Berne) était un mathématicien suisse spécialiste en géométrie et en analyse complexe. Il a joué …   Wikipédia en Français

  • Ludwig Schläfli — (15 janvier 1814 à Grasswyl (Seeberg) – 20 mars 1895 à Berne) est un mathématicien suisse spécialiste en géométrie et en analyse complexe. Il a joué un rôle clé dans le développement de la notion d espace de dimension quelconque …   Wikipédia en Français

  • Ludwig Schlafli — Ludwig Schläfli Ludwig Schläfli Ludwig Schläfli (15 janvier, 1814 à Grasswyl – 20 mars 1895 à Berne) était un mathématicien suisse spécialiste en géométrie et en analyse complexe. Il a joué …   Wikipédia en Français

  • 4-polytope régulier convexe — Un hypercube en rotation En mathématique, un polytope régulier convexe à 4 dimensions (ou polychore) est un polytope à 4 dimensions qui est à la fois régulier et convexe. Ce sont les analogues en 4 dimensions des solides de Platon (3 dimensions)… …   Wikipédia en Français

  • 4-polytope uniforme — Diagramme de Schlegel du 120 cellules rectifié. Un 4 polytope uniforme est, en géométrie, un 4 polytope isogonal dont les cellules sont des polyèdres uniformes. Il s agit de l équivalent de ces derniers en dimension 4 …   Wikipédia en Français

  • Polychore — 4 polytope régulier convexe Un hypercube en rotation En mathématique, un polytope régulier convexe à 4 dimensions (ou polychore) est un polytope à 4 dimensions qui est à la fois régulier et convexe. Ce sont les analogues en 4 dimensions des… …   Wikipédia en Français


We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.