Suite arithmétique

Suite arithmétique
1, 3, 5, 7, 9, 11, 13…
La suite des nombres impairs
est arithmétique de raison 2.

En mathématiques, une suite arithmétique est une suite (par exemple de nombres) dans laquelle chaque terme permet de déduire le suivant en lui ajoutant une constante appelée raison.

Cette définition peut s'écrire sous la forme d'une relation de récurrence, pour chaque indice n :

u_{n+1} = u_n + r\,.

Cette relation est caractéristique de la progression arithmétique ou croissance linéaire. Elle décrit bien les phénomènes dont la variation est constante au cours du temps, comme l'évolution d'un compte bancaire à intérêts simples.

Les suites arithmétiques satisfont une formule générale pour le calcul des termes ainsi que pour la série associée.

Sommaire

Terme général

Si E est un groupe et si (u_n )_{n\in\mathbb N} est une suite arithmétique de E de raison r\in E alors, pour tout n\in\mathbb N :

u_n = u_0 + n \cdot r \,

Plus généralement, si la suite est définie sur A = \{n \in \mathbb N, n \geq n_0\} et si n et p appartiennent à A alors :

u_n = u_p + (n - p) \cdot r \,

Une suite arithmétique est donc entièrement déterminée par la donnée de son premier terme u_{n_0} et par sa raison r.

Réciproquement, une suite définie sur \{n \in \mathbb N, n \geq n_0\} par

u_n = u_{n_0} + (n - n_0) \cdot r \,

est une suite arithmétique de raison r.

En analyse réelle ou complexe, la suite arithmétique est l'aspect discret de la fonction affine.

Sens de variation et convergence

Ce paragraphe concerne les suites arithmétiques à valeurs dans \R.

Si r > 0 la suite est croissante, si r < 0 la suite est décroissante et si r = 0 la suite est constante.

En général (si r est non nul), la suite arithmétique est divergente. Cependant elle admet une limite:

  • si r > 0 sa limite est  + \infty
  • si r < 0 sa limite est  - \infty.
  • Si la raison est nulle, la suite est constante et converge vers la constante.

Somme des termes

Article détaillé : Somme (arithmétique).

Si E = \R ou \mathbb C et si (u_n )_{n\in\mathbb N} est une suite arithmétique de E alors, pour tout n\in\mathbb N :

\sum_{0 \le p \le n}u_p={(n+1)\over 2}(u_0+u_n)

La légende veut que la méthode de calcul fut inventée par Carl Friedrich Gauss, élève dissipé qu'il s'agissait d'occuper et à qui l'on aurait confié la tâche de calculer la somme de tous les entiers de 1 à 100. En écrivant la somme deux fois, dans un ordre différent, il obtint :

S = 1 + 2 + 3 + .... + 98 + 99 + 100
S = 100 + 99 + 98 + ...+ 3 + 2 + 1

Puis, remarquant que 100 + 1 = 99 + 2 = 98 + 3 = ... = 101, il obtint facilement

2S = 100 × 101 donc S = {100\times 101\over 2}

Légende ou réalité, cette astuce est la méthode de démonstration pour calculer la somme des termes :

S = u0 + u1 + ... + un
S = un + un − 1 + ... + u0

Remarquant que up + unp = u0 + un, il vient

2S = (n+1) \times (u_0+u_n)

Cette propriété s'applique pour calculer la somme des n premiers entiers, autrement dit lorsque u0 = 0 et r=1

1 + 2 + 3 ... + n = \frac{n(n+1)}{2}

et se généralise à toute somme de termes consécutifs d'une suite arithmétique

u_p + u_{p+1} + ...+u_n = \frac{(n-p+1)(u_n + u_p)}{2}

Notons qu'il s'agit de la moyenne du premier et du dernier terme que multiplie le nombre de termes.

Elle se généralise aussi à toute suite à valeurs dans un espace vectoriel sur un corps commutatif de caractéristique différente de 2

Voir aussi


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Suite arithmétique de Wikipédia en français (auteurs)

См. также в других словарях:

  • Suite arithmetique — Suite arithmétique En mathématique, une suite arithmétique est une suite définie sur à valeurs dans un groupe additif E telle qu il existe un élément de appelé raison pour lequel : En pratique …   Wikipédia en Français

  • Arithmetique modulaire — Arithmétique modulaire Couverture de l’édition originale des Recherches arithmétiques de Gauss, livre fondateur de l’arithmétique modulaire. En mathématiques et plus précisément en théorie algébrique des nombres, l’arithmétique modulaire est un… …   Wikipédia en Français

  • Arithmétique Modulaire — Couverture de l’édition originale des Recherches arithmétiques de Gauss, livre fondateur de l’arithmétique modulaire. En mathématiques et plus précisément en théorie algébrique des nombres, l’arithmétique modulaire est un ensemble de méthodes… …   Wikipédia en Français

  • Arithmétique modulaire (synthèse) — Arithmétique modulaire Couverture de l’édition originale des Recherches arithmétiques de Gauss, livre fondateur de l’arithmétique modulaire. En mathématiques et plus précisément en théorie algébrique des nombres, l’arithmétique modulaire est un… …   Wikipédia en Français

  • Arithmétique modulo — Arithmétique modulaire Couverture de l’édition originale des Recherches arithmétiques de Gauss, livre fondateur de l’arithmétique modulaire. En mathématiques et plus précisément en théorie algébrique des nombres, l’arithmétique modulaire est un… …   Wikipédia en Français

  • Suite recurrente lineaire — Suite récurrente linéaire En mathématiques, on appelle suite récurrente linéaire d’ordre p, toute suite à valeurs dans un corps K (généralement ou ) définie pour tout par la relation de récurrence suivante : a0, a1, …ap − 1 étant p scalaires …   Wikipédia en Français

  • Suite récurrente linéaire d'ordre 1 — Suite récurrente linéaire En mathématiques, on appelle suite récurrente linéaire d’ordre p, toute suite à valeurs dans un corps K (généralement ou ) définie pour tout par la relation de récurrence suivante : a0, a1, …ap − 1 étant p scalaires …   Wikipédia en Français

  • Suite geometrique — Suite géométrique En mathématiques, on appelle suite géométrique une suite u définie sur à valeurs dans un corps E, et telle qu il existe un élément q de appelé raison pour lequel : On dit alors que les termes …   Wikipédia en Français

  • Suite arithmetico-geometrique — Suite arithmético géométrique En mathématiques, une suite arithmético géométrique est une suite mélangeant les concepts de suite arithmétique et de suite géométrique. Sommaire 1 Définition 2 Terme général 2.1 Méthode classique …   Wikipédia en Français

  • suite — [ sɥit ] n. f. • XIIIe; siute « poursuite en justice » 1080; a. p. p. de suivre; lat. pop. sequitus I ♦ A ♦ Action de poursuivre. 1 ♦ Dr. Droit de suite : droit qui permet au créancier hypothécaire de suivre l immeuble hypothéqué dans les mains… …   Encyclopédie Universelle


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»