Stockage de l'hydrogène


Stockage de l'hydrogène

Stockage d'hydrogène

Le stockage de l’hydrogène désigne la mise en réserve de l'élément chimique Hydrogène en vue de sa mise a disposition. Le but des différentes techniques envisagées est pour une grande part l'utilisation de l'hydrogène à des fins énergétique en produisant de l'énergie cinétique ou électrique.

La problématique du stockage de l’hydrogène est, et continuera d’être pendant probablement plusieurs décennies, l’une des questions et défis technologiques et scientifiques les plus importants. Son acuité découle de l’importance qu’ont les transports dans les sociétés actuelles. En effet l’hydrogène peut-être utilisé, comme le pétrole, pour « faire avancer » un véhicule.

Il y a essentiellement deux moyens de « faire avancer » un véhicule avec de l’hydrogène :

  1. avec un moteur à combustion interne comme dans le cas des véhicules actuels. L’efficacité est alors limitée par le cycle de Carnot et le rendement est d’environ 25 %.
  2. avec un moteur électrochimique basé sur une pile à combustible. L’efficacité n’est alors pas limité par le cycle de Carnot et le rendement peut atteindre 50-60%.

Pourquoi le stockage d’hydrogène est-il si problématique ? Parce que dans les conditions normales[1], l’hydrogène est sous forme gazeuse et a une densité de 0,09 kg/m³. Donc dans ces conditions pour qu’un véhicule ait une autonomie d’au moins 400 km, la masse nécessaire d'hydrogène serait de 4 kg, soit un volume d’hydrogène[2] d’environ 45 m3 (45 000 litres). Le réservoir devrait avoir les dimensions d’un cube d’à peu près 3,5 m de côté ! Ou autrement dit, avec un réservoir actuel dans le meilleur des cas le véhicule pourrait parcourir 600 m !

Sommaire

Le stockage dans des réservoirs de la molécule H2

Sous forme gazeuse

Un moyen de diminuer le volume d’un gaz à température constante est d’augmenter sa pression (cf. la loi de Boyle-Mariotte). Avec la technologie actuelle on sait fabriquer des réservoirs maintenant l’hydrogène sous une pression de 200 bars[3]. A cette pression l’hydrogène possède une densité de 11 kg/m³, soit un gain d’un facteur supérieur à mille par rapport à sa densité à pression et température ambiantes. Néanmoins dans ces conditions le volume nécessaire pour stocker « nos » 4 kg d’hydrogène[4] serait encore de 360 litres (à peu près le volume de deux baignoires).
Des réservoirs capables de supporter des pressions de 450 bars en usage régulier sont en train d’être développés et le volume occupé par l’hydrogène serait divisé par deux.

Bus avec un moteur à combustion interne fonctionnant à l'hydrogène, circule sur la ligne 309 de la ville de Berlin. Le bus est muni de dix réservoirs chacun stockant 50kg d'hydrogène gazeux à 350bar. Le bus pèse ~18T, peut transporter 80 personnes et à une autonomie d'environ 220km

Sous forme liquide

L’hydrogène sous forme liquide (LH2) possède une densité de 70,8 kg/m³, dans ces conditions le volume du réservoir nécessaire pour stocker « nos » 4 kg d’hydrogène[5] serait de 60 litres soit le volume des réservoirs des voitures à essence actuels. Néanmoins pour être à l’état liquide, l’hydrogène doit être porté à une température de -240 à -250 °C ! Donc, pour être utilisés, de tels réservoirs doivent être équipés d’importants systèmes secondaires pour maintenir l’hydrogène à cette température et pour limiter les pertes par vaporisation. Une autre limitation de cette technologie est l’important coût énergétique (et polluant) nécessaire à la liquéfaction de l’hydrogène.

Le stockage « sur » des composés solides (adsorption)

L’adsorption est un phénomène physico-chimique qui consiste en l’« immobilisation » d’un composé sur la surface d’un autre. L’hydrogène peut se fixer sur la plupart des surfaces solides mais quasiment seul l’adsorption sur des surfaces de carbone est envisagée pour des applications technologiques. Cette méthode pour le stockage d’hydrogène n’en est à l’heure actuelle qu’aux premières phases de recherche.
Pour que cette méthode soit intéressante il faut pouvoir développer des matériaux avec de grandes surfaces spécifiques. L’utilisation de nanotubes de carbone est aussi envisagée mais l'un des principaux freins actuels est que ceux-ci n'absorbent l'hydrogène qu'à très basse température (-196 °C). Dans tous les cas, les résultats actuels sont encore trop parcellaires pour pouvoir présager de leur devenir.

Le stockage « dans » des composés solides (hydrures)

La classe des hydrures est la famille des composés qui comportent de l’hydrogène et dont celui-ci possède une polarisation négative relativement à l’élément du composé auquel il est lié. On peut classer les hydrures selon la nature de la liaison principale[6] entre l’hydrogène et l’autre élément. Les hydrures sont dits covalents quand la liaison est de type covalent. C’est le cas des hydrures les plus communs tels que l’eau (H2O), l’ammoniac (NH3), le méthane (CH4). Les hydrures sont dits métalliques quand la liaison est de type métallique.

Hydrures métalliques

Plusieurs métaux purs ou alliages sont capables d’absorber[7] de l’hydrogène en leur sein. Le composé métallique agit un peu comme une éponge à hydrogène. Dans les hydrures métalliques l’hydrogène est stocké sous forme atomique (H) et non plus moléculaire (H2) comme dans le cas précédent des réservoirs. L’absorption d’hydrogène (aussi appelée hydruration) peut être effectué par l’intermédiaire du gaz dihydrogène (H2) dissocié en deux atomes d’hydrogène (H) à une température et pression données et caractéristiques du matériau absorbant. L’absorption d’hydrogène peut aussi être effectué à température et pression ambiante par voie électrochimique et plus précisément par électrolyse de l’eau.
La capacité de stockage des hydrures métalliques peut être très importantes puisque l’alliage Mg2 FeH6 « stocke » 150 kg d’hydrogène par m3. Un réservoir de 26 litres serait alors suffisant pour « nos » 4 kg d’hydrogène. Néanmoins la densité volumique ne suffit pas, il faut que l’alliage qui a absorbé l’hydrogène puisse le désorber (relâcher) dans des conditions acceptables[8]. En effet, pour être utilisé dans des applications mobiles, les hydrures métalliques considérés doivent avoir des températures et des pressions d’équilibre compatibles avec les dites applications (entre 1 et 10 bar pour la pression, entre °C et 100 °C pour la température). Plusieurs familles d’hydrures d’alliages intermétalliques sont envisagées et envisageables : les AB5 (LaNi5…) ; les AB2 (ZrV2) ; les A2B (Mg2Ni)… Il faut signaler que les alliages dérivés de LaNi5 sont les alliages utilisés dans les batteries rechargeables Nickel-Hydrure Métallique (Ni-MH) dont plusieurs millions d’unités sont vendues à travers le monde chaque année.

Hydrures complexes

Les métaux alcalins, quand ils sont associés à un élément du groupe 13 (p.ex. bore ou aluminium) et d’hydrogène peuvent former des structures polyatomiques que l’on nomme des complexes.
Les hydrures complexes les plus intéressants pour le stockage d’hydrogène sont les tétrahydroborates M(BH4) et les tétrahydroaluminates ou alanates M(AlH4). Afin d’avoir un rapport massique entre l’hydrogène stocké et la masse totale du composé « stockant » le plus élevé possible, M représente souvent le lithium ou le sodium (, NaBH4, LiAlH4, ). À ce jour, le composé LiBH4 possède la plus grande densité massique d’hydrogène (18%). Toutefois, la cinétique de stockage était jusqu'à peu assez défavorable (température notamment)[9]. Dans ces hydrures complexes, l’hydrogène occupe les sommets d’un tétraèdre dont le centre est occupé par un atome d’aluminium ou de bore. Ces tétraèdres portent une charge négative qui est compensée par la charge positive des cations Li+ ou Na+.

Les principes du stockage et de la libération d’hydrogène sont différents dans le cas des hydrures complexes de ce qu’ils sont pour les hydrures métalliques. En effet, le stockage s’effectue pour les premiers lors d’une réaction chimique et non pas par « simple » occupation des « vides » de la structure comme dans le cas des hydrures métalliques. Pour l’alanate de sodium, le mécanisme de libération de l’hydrogène se représente comme suit :
6 NaAlH4 -> 2 Na3AlH6 + 4 Al + 6 H2 -> 6 NaH + 6 Al + 9 H2
Jusqu’à la fin des années 90 et l’utilisation de catalyseurs à base de titane [10], la réaction inverse c'est-à-dire de stockage de l’hydrogène n’était pas possible dans des conditions modérées. Cette découverte permet d’envisager leur utilisation pour le stockage d’hydrogène des applications mobiles: une trentaine de kilogrammes d’hydrures complexes suffirait en effet à héberger les 4 kg d’hydrogène déjà évoqués.

Acide formique

En 2006, une équipe de recherche de l’EPFL (Suisse) a présenté l'utilisation de l'acide formique comme solution de stockage de l’hydrogène[11]. Un système catalytique homogène, basé sur une solution aqueuse de catalyseurs au ruthénium décompose l'acide formique (HCOOH) en dihydrogène H2 et dioxyde de carbone (CO2)[12]. Le dihydrogène peut être ainsi produit dans une large plage de pression (1 – 600 bars) et la réaction ne génère pas de monoxyde de carbone. Ce système catalytique résout les problèmes des catalyseurs existants pour la décomposition de l'acide formique (faible stabilité, durée de vie des catalyseurs limitée, formation de monoxyde de carbone) et viabilise cette méthode de stockage d'hydrogène[13]. Le coproduit de cette décomposition, le dioxyde de carbone, peut être utilisé dans un deuxième temps pour générer à nouveau de l’acide formique par hydrogénation. L'hydrogénation catalytique du CO2 a été longuement étudiée et des méthodes efficaces ont été développées[14],[15]. L'acide formique contient 53 g/L d'hydrogène à température et pression ambiante, ce qui est deux fois la capacité de l’hydrogène compressé à 350 bars. Pur, l'acide formique est un liquide inflammable à + 69°C, ce qui est supérieur à l’essence (-40°C) ou l'éthanol (+13°C). Dilué dès 85%, il n'est plus inflammable. L'acide formique dilué est même inscrit sur la liste des additifs alimentaires de l'administration américaine des denrées alimentaires et des médicaments (FDA)[16].

Autres possibilités

D'autres types d'hydrures peuvent être envisagés. Par exemple la famille des amino-boranes (NHxBHx) constitue une voie prometteuse puisque ces derniers peuvent théoriquement absorber plus de 20% en masse. Le composé NH4BH4 peut absorber 24.5% en masse mais il est instable au-dessus de -20 °C ce qui le rend peu pratique. Par contre le composé NH3BH3 (20%) est stable dans les conditions normales et nécessite des températures modérées pour relâcher l'hydrogène, ce qui le rend potentiellement plus intéressant [17].


Notes et références de l'article

Sources

  • Généralités
    • (en) L. Schlapbach, A. Züttel ; Hydrogen-storage materials for mobile applications ; Nature (2001) vol.414 pp.353-8 [lire en ligne (page consultée le 2 mars 2008)]
    • (en) S. Satyapal, J. Petrovic, G. Thomas ; Gassing Up with Hydrogen, Scientific American march 2007 (it) idem. ; Fare il pieno di idrogeno, Le Scienze agosto 2007, numero 468, pp.96-103
  • Hydrures
    • (en) W. Grochala, P.P. Edwards ; Hydrides of The Chemical Elements for The Storage and Production of Hydrogen ; Chemical Review (2004) vol.104 pp.1283-1315

références

  1. À pression atmosphérique et 25 °C.
  2. Avec un véhicule ayant une consommation de 7 litres au 100 km, il faudrait 28 litres d’essence ; le rapport énergétique est à peu près d’1kg d’hydrogène pour 3,5 litres d’essence dans le cas du moteur à combustion. 8kg d’hydrogène serait donc nécessaire. Pour un moteur à pile à combustible, le rendement pouvant être doublé, 4kg d’hydrogène serait alors nécessaire. C’est cette valeur qui a été retenue.
  3. C'est-à-dire 200 fois la pression atmosphérique normale.
  4. Cf. paragraphe et note précédents.
  5. Cf. paragraphe et note précédents.
  6. Les liaisons hydrogènes ne sont pas considérées ici.
  7. Ne pas confondre aDsorption et aBsorption, le premier terme est employé quand un composé (p.ex. l’hydrogène) est « accroché » à la surface d’un autre ; le deuxième quand l’hydrogène est « accroché » à l’intérieur d’un autre composé. On parle de sorption quand on ne veut pas distinguer les deux modes et de désorption quand l’hydrogène est « relâché » de son support.
  8. Grosso modo, la capacité d’un alliage à absorber l’hydrogène et sa capacité à le relâcher sont en sens inverse ; plus il est facile d’absorber, plus il est difficile de désorber l’hydrogène.
  9. Cependant une forme plus instable de ce composé à récemment été mise en évidence. Néanmoins celle-ci nécessite de très fortes pressions pour être synthétisée. [1]
  10. La manière exacte dont le titane agit comme promoteur est encore sujet à de nombreuses discussions et le qualificatif de catalyseur dans toute la rigueur de sa définition n’est peut-être pas le plus exact. En effet, il semble ne pas être dans le même état au début et à la fin de la réaction. Le terme de dopant est parfois alors utilisé.
  11. Gábor Laurenczy, Céline Fellay, Paul J. Dyson, Hydrogen production from formic acid. PCT Int. Appl. (2008), 36pp. CODEN: PIXXD2 WO 2008047312 A1 20080424 AN 2008:502691
  12. Céline Fellay, Paul J. Dyson, Gábor Laurenczy, A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst, Angew. Chem. Int. Ed., 2008, 47, 3966–3970.
  13. Ferenc Joó, Breakthroughs in Hydrogen Storage – Formic Acid as a Sustainable Storage Material for Hydrogen, ChemSusChem 2008, 1, 805–808.
  14. P. G. Jessop, in Handbook of Homogeneous Hydrogenation (Eds.: J. G. de Vries, C. J. Elsevier), Wiley-VCH, Weinheim, Germany, 2007, pp. 489–511.
  15. P. G. Jessop, F. Joó, C.-C. Tai, Recent advances in the homogeneous hydrogenation of carbon dioxide, Coord. Chem. Rev., 2004, 248, 2425–2442.
  16. US Code of Federal Regulations: 21 CFR 186.1316, 21 CFR 172.515
  17. Hydrogen Storage in Ammonia and Aminoborane Complexes, présentation, de A. Raissi.
    Enhancement of the Hydrogen Storage Properties of Ammonia Borane in the MicroNano Pores of Mesoporous Silica, présentation, de T. Autrey & al.

Voir aussi

Commons-logo.svg

Articles connexes

  • hydrure
  • cryogénie
  • BMW Hydrogen 7: véhicule pouvant fonctionner avec de l'hydrogène liquide
  • Toyota Prius: véhicule à technologie hydride utilisant une batterie à hydrure métallique (dans ce cas l'hydrogène n'est « utilisé » qu'à l'intérieur de la batterie comme moyen de « stocker » l'électricité ; le véhicule possède un moteur à essence classique et un moteur électrique)
  • Pile à combustible
  • Économie hydrogène

Liens et documents externes

  • Projets co-financés par l'Union européenne
    • projet HyFLEET:CUTE: suivi de bus pour le transport public fonctionnant à l'hydrogène (en)
    • projet Hychain: flotte de véhicules de faibles puissances utilisant l'hydrogène comme carburant (fr),(en),(de),(it),(es)
    • projet Zero Regio: mise en place dans deux régions allemandes et italiennes d'infrastructures pour l'utilisation d'hydrogène dans les transports (en),(de),(it)
    • h2moves.eu autres projets en Europe (en)
  • (fr+en) Portail canadien de l'économie basée sur l'hydrogène
  • Portail de la chimie Portail de la chimie
  • Portail de l’énergie Portail de l’énergie
  • Portail de l’industrie Portail de l’industrie
  • Portail des transports Portail des transports
Ce document provient de « Stockage d%27hydrog%C3%A8ne ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Stockage de l'hydrogène de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Stockage d’hydrogène — Stockage d hydrogène Le stockage de l’hydrogène désigne la mise en réserve de l élément chimique Hydrogène en vue de sa mise a disposition. Le but des différentes techniques envisagées est pour une grande part l utilisation de l hydrogène à des… …   Wikipédia en Français

  • Stockage d'hydrogène — Le stockage de l’hydrogène désigne la mise en réserve de l élément chimique Hydrogène en vue de sa mise a disposition. Le but des différentes techniques envisagées est pour une grande part l utilisation de l hydrogène à des fins énergétiques en… …   Wikipédia en Français

  • Hydrogène gazeux — Dihydrogène Dihydrogène Général Nom IUPAC dihydrogène Synonymes …   Wikipédia en Français

  • Stockage d'énergie — Le stockage de l énergie est l action qui consiste à placer une quantité d énergie en un lieu donné pour permettre son utilisation ultérieure. Par extension, le terme stockage d énergie est souvent employé pour désigner le stockage de matière qui …   Wikipédia en Français

  • Stockage d'energie — Stockage d énergie Le stockage de l énergie est l action qui consiste à placer une quantité d énergie en un lieu donné pour permettre son utilisation ultérieure. Par extension, le terme stockage d énergie est souvent employé pour désigner le… …   Wikipédia en Français

  • Stockage de l'énergie — Stockage d énergie Le stockage de l énergie est l action qui consiste à placer une quantité d énergie en un lieu donné pour permettre son utilisation ultérieure. Par extension, le terme stockage d énergie est souvent employé pour désigner le… …   Wikipédia en Français

  • Stockage par volant d'inertie — Stockage d énergie Le stockage de l énergie est l action qui consiste à placer une quantité d énergie en un lieu donné pour permettre son utilisation ultérieure. Par extension, le terme stockage d énergie est souvent employé pour désigner le… …   Wikipédia en Français

  • Hydrogene — Hydrogène Hydrogène ← Hydrogène → …   Wikipédia en Français

  • Hydrogène — ← Hydrogène → Hélium …   Wikipédia en Français

  • Hydrogène solide — Hydrogène Hydrogène ← Hydrogène → …   Wikipédia en Français


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.