Statistique de Boltzmann


Statistique de Boltzmann

Statistique de Maxwell-Boltzmann

Cet article fait partie de la série
Mécanique quantique
 \hat H | \psi\rangle = i\hbar\frac{{\rm d}}{{\rm d}t}|\psi\rangle
Postulats de la mécanique quantique

Histoire de la mécanique quantique

La statistique de Maxwell-Boltzmann est une loi de probabilité ou distribution utilisée en physique statistique pour déterminer la répartition des particules entre différents niveaux d'énergie. Elle est notamment à la base de la théorie cinétique des gaz.

Sommaire

Énoncé

Formulation discrète

On se donne un système de N particules n'interagissant pas entre elles et pouvant prendre les différents états d'énergie discrets Ei. Le nombre Ni de particules dans un état d'énergie donné Ei est :

 N_i = \frac{N}{Z(T)}~ g_i e^{-\beta E_i} = \frac{N}{\sum_{j} g_j e^{-E_j/k_{B}T}}~ g_i e^{\frac{-E_i}{k_{B}T}}\,

  • gi est la dégénérescence de l'état d'énergie Ei, c'est-à-dire le nombre d'états possédant l'énergie Ei ;
  • kB est la constante de Boltzmann ;
  • T est la température du système (celui-ci doit donc être à l'équilibre) ;
  • \beta = \frac{1}{k_B T}
  • Z(T) est la fonction de partition du système.

Formulation continue

On considère un système de N particules sans interaction entre elles et pouvant prendre continûment tout état d'énergie entre zéro et l'infini. Le nombre dNE de particules possédant une énergie entre E et E + dE est :

\mathrm{d}N_E = \frac{N}{Z(T)}~ g(E)e^{-\beta E}\, \mathrm{d}E = \frac{N}{\int g(\varepsilon)\exp\left(-\varepsilon/k_{B}T\right) \mathrm{d}\varepsilon}~ g(E)e^{\frac{-E}{k_{B}T}} \, \mathrm{d}E,

  • g(E) est la dégénérescence du système (densité de probabilité des états ayant une énergie comprise entre E et E + dE) ;
  • \beta = \frac{1}{k_B T}
  • Z(T) est la fonction de partition du système.

Limitations

La statistique de Maxwell-Boltzmann a été bâtie en supposant l'absence d'interaction entre les particules concernées : elle n'est donc valable en toute rigueur que pour un gaz parfait classique. Elle est toutefois utilisable aussi comme approximation du comportement d'un gaz réel quand il est possible de négliger les interactions entre ses particules, mais ne peut s'appliquer, par exemple, à aucun liquide.

De plus, cette statistique est construite dans le cadre de la mécanique classique; elle ne s'applique donc que lorsque les effets quantiques sont négligeables, par exemple à des températures suffisamment hautes. À basse température, elle doit être remplacée par la statistique de Bose-Einstein pour les bosons et la statistique de Fermi-Dirac pour les fermions.

Pour comparer ces trois statistiques, il est utile de reformuler la statistique de Maxwell-Boltzmann en posant :

 \exp ( - \mu / k_{B}T ) =  { \sum_{j} g_j \exp ( - E_j / k_{B}T ) } \,

d'où :

 n_i = \frac{N_i} {N} = \frac{ g_i \exp ( - E_i / k_{B}T ) } { \exp ( - \mu / k_{B}T ) } = \frac{g_i} { \exp ( \frac{ E_i - \mu } {k_{B}T} ) } \,

Applications

Biophysique

En neurosciences, on décrit souvent les mécanismes d'ouverture et de fermeture des Canaux ioniques par une fonction de Boltzmann simplifiée quand ceux-ci sont dépendants du potentiel de membrane. La formule utilisée est alors:

\frac{G(V)}{G_{max}}=\frac{1}{1+e^{\frac{V-V_{1/2}}{k_{B}}}} ,

  • V est le potentiel de membrane,
  • G(V) est la conductance ionique associée aux canaux, dépendante du potentiel de membrane,
  • Gmax est la conductance maximale,
  • V1/2 est le potentiel de membrane pour lequel la moitié des canaux sont ouverts,
  • k est la dépendance de l'ouverture des canaux par rapport au changement de potentiel, décrit dans la littérature comme étant la « constante de pente ».

La fonction de Boltzmann est ici utilisée pour décrire les résultats expérimentaux issus de la mesure patch-clamp des courants de membrane, et ainsi determiner les propriétés des différentes catégories de courants membranaires. Les paramètres V1/2 et k sont determinants pour la modélisation informatique des propriétés électriques d'une cellule nerveuse.

Voir aussi

Sur les autres projets Wikimedia :

Articles connexes

  • Portail de la physique Portail de la physique
Ce document provient de « Statistique de Maxwell-Boltzmann ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Statistique de Boltzmann de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • statistique de Boltzmann — Bolcmano statistika statusas T sritis fizika atitikmenys: angl. Boltzmann statistics vok. Boltzmann Statistik, f rus. статистика Больцмана, f pranc. statistique de Boltzmann, f …   Fizikos terminų žodynas

  • Boltzmann statistics — Bolcmano statistika statusas T sritis fizika atitikmenys: angl. Boltzmann statistics vok. Boltzmann Statistik, f rus. статистика Больцмана, f pranc. statistique de Boltzmann, f …   Fizikos terminų žodynas

  • Boltzmann-Statistik — Bolcmano statistika statusas T sritis fizika atitikmenys: angl. Boltzmann statistics vok. Boltzmann Statistik, f rus. статистика Больцмана, f pranc. statistique de Boltzmann, f …   Fizikos terminų žodynas

  • Statistique de maxwell-boltzmann — Cet article fait partie de la série Mécanique quantique Postulats de la mécanique quantique …   Wikipédia en Français

  • STATISTIQUE (THERMODYNAMIQUE) — L’interprétation de l’évolution des systèmes physiques nécessite à la fois les lois de la dynamique, classique ou quantique, et celles de la thermodynamique. Par conséquent, il est important de clarifier la relation entre dynamique et… …   Encyclopédie Universelle

  • STATISTIQUE (MÉCANIQUE) — La mécanique statistique a pour but d’expliquer les propriétés de la matière, en particulier ses propriétés thermiques, à partir des lois de la mécanique auxquelles obéissent les atomes et molécules dont elle est formée (et, plus généralement,… …   Encyclopédie Universelle

  • Statistique de fermi-dirac — Cet article fait partie de la série Mécanique quantique Postulats de la mécanique quantique Histo …   Wikipédia en Français

  • Statistique de Bose Einstein — Pour les articles homonymes, voir Einstein (homonymie). Cet article fait partie de la série Mécanique quantique …   Wikipédia en Français

  • Statistique de bose-einstein — Pour les articles homonymes, voir Einstein (homonymie). Cet article fait partie de la série Mécanique quantique …   Wikipédia en Français

  • BOLTZMANN (L.) — Physicien et philosophe des sciences, Ludwig Boltzmann est un des penseurs les plus originaux de la seconde moitié du XIXe siècle. Son influence a été profonde sur le développement de la science moderne. Par son interprétation de l’entropie, qui… …   Encyclopédie Universelle


We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.