Richard Dedekind


Richard Dedekind
Richard Dedekind
Image illustrative de l'article Richard Dedekind
Naissance 6 octobre 1831
Brunswick Flag of Lower Saxony.svg Basse-Saxe (Duché de Brunswick)
Décès 12 février 1916
Brunswick, Basse-Saxe (Empire allemand)
Nationalité Drapeau d'Allemagne Allemand
Champs Mathématiques, arithmétique
Institution École polytechnique fédérale de Zurich
Diplômé de Université de Göttingen
Renommé pour Ensemble fini au sens de Dedekind
Nombre de Dedekind (en)
Anneau de Dedekind
Fonction êta de Dedekind
Somme de Dedekind
Fonction zêta de Dedekind
Nombres réels (Coupures de Dedekind)

Julius Wilhelm Richard Dedekind (6 octobre 1831 - 12 février 1916) est un mathématicien allemand et un proche disciple de Ernst Kummer en arithmétique. Pionnier de l'axiomatisation de l'arithmétique, il a proposé une définition axiomatique de l'ensemble des nombres entiers ainsi qu’une construction rigoureuse des nombres réels à partir des nombres rationnels (méthode des « coupures » de Dedekind).

Sommaire

Biographie

Années de formation

Dedekind est né et mort à Brunswick, où il a passé presque toute sa vie. Il était le plus jeune fils de Julius Levin Ulrich Dedekind. Il rejeta plus tard les prénoms : Julius Wilhelm. Il vécut célibataire avec sa sœur Julia jusqu'à la mort de celle-ci en 1914. En 1848, il entra au Collegium Carolinum de Brunswick et en 1850, avec de solides connaissances en mathématiques il entra à l'université de Göttingen.

À Göttingen, Gauss enseignait les mathématiques à un niveau élémentaire. Dans les départements de mathématiques et de physique, Dedekind apprit beaucoup sur la théorie des nombres. L'un des professeurs principaux de Dedekind fut Moritz Abraham Stern (en) qui écrivit beaucoup de travaux sur la théorie des nombres. Il fit sa thèse courte : Über die Theorie der Eulerschen Integrale (Sur la théorie des intégrales d'Euler) supervisée par Gauss. Sa thèse était adroite et autonome mais elle ne montrait aucun talent spécial à l'inverse des travaux postérieurs de Dedekind. Néanmoins, Gauss avait certainement vu la prédilection de Dedekind pour les mathématiques. Dedekind reçut son doctorat en 1852 et il fut le dernier élève de Gauss.

Professeur

Après avoir passé deux ans à Berlin, il fut récompensé par le diplôme d'habilitation, presque en même temps que Riemann. Il commença à enseigner comme privat-docent à Göttingen et donnait des cours sur les probabilités et sur la géométrie. Il étudiait quelquefois avec Dirichlet et ils devinrent des amis proches. Il fit connaître la théorie de Galois dans le monde germanophone et popularisa la notion fondamentale de groupe en algèbre et en arithmétique.

En 1858, il alla à Zurich pour enseigner à l'École polytechnique fédérale de Zurich. C'est lors de ce séjour suisse qu’il définit les coupures de Dedekind, une nouvelle idée pour représenter les nombres réels comme une division des nombres rationnels. Un nombre réel est une coupure qui sépare les nombres rationnels en deux ensembles, un ensemble supérieur et un ensemble inférieur. Par exemple, la racine carrée de 2 est une coupure entre tous les nombres négatifs ou ayant un carré inférieur à 2 et ceux positifs ayant un carré supérieur à 2. C'est aujourd'hui une des définitions standards des nombres réels.

En 1862, le Collegium Carolinum de Brunswick devenant une Technische Hochschule, Dedekind put y bénéficier d'une chaire de professeur : il rentra donc au Hanovre et y enseigna jusqu’à sa retraite en 1894 ; quoique retraité, il poursuivit une activité scientifique soutenue.

Dedekind, qui vivait avec sa sœur Julia, ne se maria jamais.

Il était membre des plus grandes académies d'Europe : l’Académie de Berlin (1880), de Rome, et l'Académie des Sciences de France (1900). Il était docteur honoris causa des universités d’Oslo, de Zürich et de Brunswick.

Ce que sont les nombres...

En 1863, il édita les conférences de Dirichlet sur la théorie des nombres dans Vorlesungen über Zahlentheorie (Traités sur la théorie des nombres). En 1872, il publia ses réflexions sur la définition rigoureuse des nombres irrationnels par les coupures de Dedekind dans un article intitulé Stetigkeit und irrationale Zahlen (« Continuité et nombres irrationnels »). En 1874, il rencontra Cantor dans la ville suisse d’Interlaken. Dedekind fut parmi les premiers mathématiciens à comprendre la portée des travaux de Cantor sur la théorie des ensembles infinis.

Bibliographie

  • R. Dedekind (trad. H. Sinaceur), La création des nombres, Vrin, coll. « Mathesis », 2008, 352 p. (ISBN 2-71162-146-4) 
  • P. Dugac, Richard Dedekind et les fondements des mathématiques, Vrin, coll. « Histoire des Sciences », 1976, 334 p. (ISBN 2-71160-220-6) 
  • R. Dedekind (trad. C. Duverney), Traités sur la théorie des nombres, Genève, Tricorne, 2006, 148 p. (ISBN 2-8293-0289-3) 

Voir aussi

Articles connexes

Sur les autres projets Wikimedia :


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Richard Dedekind de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Richard Dedekind — Porträt (1850) Julius Wilhelm Richard Dedekind (* 6. Oktober 1831 in Braunschweig; † 12. Februar 1916 ebenda) war ein deutscher Mathematiker. Inhaltsverzeichnis …   Deutsch Wikipedia

  • Richard Dedekind — Infobox Scientist name = PAGENAME box width = image size =180px caption =Richard Dedekind, c. 1850 birth date = October 6, 1831 birth place = Braunschweig death date = February 12, 1916 death place = Braunschweig residence = citizenship =… …   Wikipedia

  • Julius Wilhelm Richard Dedekind — Richard Dedekind fundamentó la teoría de la recta real y creó la teoría de los ideales Julius Wilhelm Richard Dedekind (6 de octubre de 1831 12 de febrero de 1916), matemático alemán. Dedekind nació en Brunswick (Braunschweig en alemán), el más… …   Wikipedia Español

  • Julius Wilhelm Richard Dedekind — (6 de octubre de 1831 12 de febrero de 1916), matemático alemán. Dedekind nació en Brunswick (Braunschweig en alemán), el más joven de los cuatro hijos de Julius Levin Ulrich Dedekind. Vivió con Julia, su hermana soltera, hasta que falleció en… …   Enciclopedia Universal

  • Dedekind cut — Dedekind used his cut to construct the irrational, real numbers. In mathematics, a Dedekind cut, named after Richard Dedekind, is a partition of the rationals into two non empty parts A and B, such that all elements of A are less than all… …   Wikipedia

  • Dedekind-Unendlichkeit — ist ein Begriff aus der Mathematik, der eine scheinbar paradoxe Eigenschaft unendlicher Mengen einfängt. Eine endliche Menge M, etwa mit n Elementen, ist niemals zu einer echten Teilmenge gleichmächtig, d.h., es kann keine bijektive Abbildung von …   Deutsch Wikipedia

  • Dedekind-endlich — Dedekind Unendlichkeit ist ein Begriff aus der Mathematik, der eine scheinbar paradoxe Eigenschaft unendlicher Mengen einfängt. Eine endliche Menge M, etwa mit n Elementen, ist niemals zu einer echten Teilmenge gleichmächtig, d.h., es kann keine… …   Deutsch Wikipedia

  • Dedekind-unendlich — Dedekind Unendlichkeit ist ein Begriff aus der Mathematik, der eine scheinbar paradoxe Eigenschaft unendlicher Mengen einfängt. Eine endliche Menge M, etwa mit n Elementen, ist niemals zu einer echten Teilmenge gleichmächtig, d.h., es kann keine… …   Deutsch Wikipedia

  • Dedekind — is the name of: People Brendon Dedekind (born 1976), South African swimmer Friedrich Dedekind (1524 1598), German humanist, theologian, and bookseller Richard Dedekind (1831 1916), German mathematician Other 19293 Dedekind, asteroid named after… …   Wikipedia

  • DEDEKIND (R.) — Le mathématicien allemand Richard Dedekind est un des fondateurs de l’algèbre moderne. Sa théorie des idéaux, systématisation et rationalisation des « nombres idéaux» de Kummer, est en effet devenue l’outil essentiel pour étudier la divisibilité… …   Encyclopédie Universelle


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.