Polynome minimal d'un endomorphisme


Polynome minimal d'un endomorphisme

Polynôme minimal d'un endomorphisme

Le polynôme minimal est un outil qui permet d'utiliser des résultats de la théorie des polynômes à l'algèbre linéaire. Il est en effet possible d'appliquer un polynôme à un endomorphisme, comme expliqué dans l'article intérêt du concept de polynôme d'endomorphisme.

Il est défini comme le polynôme normalisé (son coefficient de plus haut degré est égal à 1) de plus petit degré qui annule un endomorphisme c'est-à-dire une application linéaire d'un espace vectoriel dans lui-même.

Il est utilisé essentiellement en dimension finie ; il joue un rôle important dans la réduction d'endomorphisme. Il dispose de propriétés fortes dont la plus célèbre est probablement le théorème de Cayley-Hamilton.

Les démonstrations associées au polynôme minimal se trouvent essentiellement dans l'article Polynôme d'endomorphisme qui approfondit ce concept dans un cadre théorique plus large.

Il existe un cas particulier, utilisé dans le cadre de la théorie de Galois et la théorie algébrique des nombres appelée polynôme minimal d'un nombre algébrique.

Sommaire

Définition

On suppose que E est un espace vectoriel de dimension finie et égale à n. Soit u un endomorphisme de E. Nous avons la définition suivante:

  • Le polynôme minimal de l'endomorphisme u est le polynôme unitaire de plus petit degré qui annule u.

Intérêt du concept

Le polynôme minimal est l'outil théorique central pour la réduction d'endomorphisme dans le cas de la dimension finie. Une réduction est une approche fréquente en algèbre, consistant à réduire un concept en des sous-concepts plus simples et qui décrivent parfaitement le concept initial. Dans le cas des endomorphismes, il en existe deux ayant un rôle particulier, les endomorphismes nilpotents et les endomorphismes diagonalisables ; les polynômes minimaux apparaissent donc pour l'analyse théorique de ces applications linéaires.

La raison du rôle central de cet outil réside dans le fait que la notion de polynôme d'endomorphisme est le cadre théorique pour la démonstration des théorèmes permettant la réduction. Le polynôme minimal y joue un rôle clé. Les démonstrations associées à cet article se trouvent naturellement traitées dans l'article associé.

Par delà son rôle théorique, le polynôme minimal propose une approche appliquée très opérationnelle. Il joue donc un rôle dans l'analyse des matrices en général et plus particulièrement dans le cas de la Réduction de matrice, des Matrices diagonales ou nilpotentes.

Sa dimension appliquée sort des frontières de l'algèbre linéaire pour offrir un outil opérationnel de résolution d'équations différentielles linéaires où il est utilisé dans de cas physiques comme les systèmes oscillants.

Approche par l'exemple

Considérons le cas où n est égal à 2, où l'espace vectoriel est réel, ce qui signifie que les multiplications scalaires des vecteurs ont lieu sur les réels. Soit un endomorphisme u ayant la représentation matricielle suivante dans une base (e1, e2):

u:\;\begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}

Calculons alors la représentation matricielle du carré de u, on trouve:

u^2:\;\begin{pmatrix} -1 & -5 \\ 10 & 14 \end{pmatrix}

Existence du polynôme minimal

On peut alors remarquer qu'il existe une relation de dépendance linéaire entre u2, u et Id l'endomorphisme identité. En effet:

\begin{pmatrix} -1 & -5 \\ 10 & 14 \end{pmatrix}-5\begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}+6\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}

Ce qui nous montre l'existence du polynôme minimal que nous notons \chi\;

\chi[X]=X^2-5X+6=(X-2)(X-3)\;

Dans cet exemple, nous avons démontré l'existence du polynôme minimal et nous avons démontré que son degré est égal à la dimension de l'espace vectoriel. Cette propriété est générale en dimension finie, le polynôme minimal existe toujours et son degré est inférieur ou égal à la dimension de l'espace.

Valeurs propres et racines

Un vecteur propre est un vecteur non nul dont l'image par l'endomorphisme lui est proportionnelle. Une des propriétés du polynôme minimal réside dans le fait que ses racines sont les valeurs propres. Recherchons alors des vecteurs propres en utilisant cette propriété. Pour la valeur propre 2, on trouve:

 \left\{\begin{matrix} x-y=2x \\ 2x+4y=2y  \end{matrix}\right.  \quad et un vecteur propre est: u1 = e1e2

En résolvant ce système nous obtenons x = − y. En posant x = λ , nous obtenons y = − λ, qui est la description paramétrique de tout vecteur propre. En choisissant λ = 1, nous obtenons le vecteur propre (1,-1)

On peut vérifier de même que u_2=e_1-2e_2\; est un vecteur propre associé à la valeur propre 3. Cette approche permet de calculer les valeurs et vecteurs propres sans calcul de déterminant. Plus la dimension augmente, plus ce mode de calcul devient efficace.

Polynôme minimal et diagonalisation

Nous disposons de deux vecteurs propres u1 et u2 qui forment une famille libre dans un espace de dimension 2, ils constituent donc une base. Nous pouvons alors remarquer que dans cette base, l'endomorphisme s'exprime sous la forme:

u:\; \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \;

Une telle matrice possède des termes tous nuls en dehors de la diagonale. Cet exemple illustre une propriété importante du polynôme minimal. L'endomorphisme est diagonalisable si et seulement si le polynôme possède toutes ses racines et qu'aucune de ses racines ne soit multiple.

Polynôme minimal et polynôme caractéristique

Le polynôme caractéristique correspond au déterminant de l'application u - \lambda Id \;. Il possède une propriété particulière. À l'instar du polynôme minimal, ses racines sont aussi les valeurs propres. Calculons alors le polynôme caractéristique P de notre endomorphisme:

P[X]=\begin{vmatrix} 1-X & -1 \\ 2 & 4-X \end{vmatrix}=(1-X)(4-X)+2=X^2-5X+6

Le polynôme caractéristique est égal dans ce cas au polynôme minimal. Il existe toujours une relation entre les deux, même si l'égalité n'est pas systématique. Dans le cas général, le polynôme minimal divise le polynôme caractéristique.

Propriétés

  • En dimension finie, le polynôme minimal existe toujours et il est de degré inférieur ou égal à la dimension de l'espace.
  • Les polynômes qui annulent l'endomorphisme et que l'on appelle polynômes annulateurs de u forment un idéal principal dans l'anneau des polynômes.

La notion de polynôme minimal d'un endomorphisme peut être restreinte à un vecteur. Le polynôme minimal d'un vecteur x est le polynôme normalisé de plus petit degré qui, appliqué à u, annule x.

  • Si x est un vecteur, alors le polynôme minimal de x divise le polynôme minimal. Il existe au moins un vecteur tel que les deux polynômes soient égaux.
  • Les racines du polynôme minimal forment l'ensemble des valeurs propres.
  • Un endomorphisme est diagonalisable si et seulement si son polynôme minimal est scindé (c'est-à-dire qu'il possède toutes ses racines) sans racine multiple.
  • Le Théorème de Cayley-Hamilton nous indique que le polynôme minimal divise le polynôme caractéristique.

Toutes ces propriétés sont démontrées dans l'article Polynôme d'endomorphisme qui développe la théorie mathématique associée à ce concept et présente d'autres propositions plus avancées.

Théorie de Galois

En théorie de Galois, étant donnés une extension de corps \mathbb{L}/\mathbb{K} et un élément α de \mathbb{L} qui est algébrique sur \mathbb{K}, le polynôme minimal de α est le polynôme normalisé p, à coefficients dans \mathbb{K}, de degré minimum tel que p(α)=0. Le polynôme minimal est irréductible, et tout autre polynôme non nul q tel que q(α)=0, est multiple de p.

C'est en fait le polynôme minimal de l'endomorphisme de \mathbb{L} défini par u(x) = αx\mathbb{L} est considéré comme un \mathbb{K}-espace vectoriel.

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Polyn%C3%B4me minimal d%27un endomorphisme ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Polynome minimal d'un endomorphisme de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Polynôme minimal d'un endomorphisme — Le polynôme minimal est un outil qui permet d utiliser des résultats de la théorie des polynômes à l algèbre linéaire. Il est en effet possible d appliquer un polynôme à un endomorphisme, comme expliqué dans l article intérêt du concept de… …   Wikipédia en Français

  • Polynome minimal d'un nombre algebrique — Polynôme minimal d un nombre algébrique Carl Friedrich Gauß utilise des polynômes minimaux appelés cyclotomiques pour déterminer les polygones constructibles à la règle et au compas. En mathématiques, le polynôme minimal d un nombre algébrique… …   Wikipédia en Français

  • Polynome minimal — Polynôme minimal Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. La notion de polynôme minimal peut avoir un sens différent selon le contexte dans lequel on se place. On distingue en particulier les… …   Wikipédia en Français

  • Polynôme minimal d'un nombre algébrique —  Ne doit pas être confondu avec Polynôme minimal d un endomorphisme. Carl Friedrich Gauß utilise des polynômes minimaux appelés cyclotomiques pour déter …   Wikipédia en Français

  • Polynôme minimal — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Soit E une K algèbre associative et x un élément de E. On appelle idéal annulateur de x l ensemble des polynômes P de K[X] tels que P(x) = 0. Deux cas de… …   Wikipédia en Français

  • Polynome d'endomorphisme — Polynôme d endomorphisme En algèbre linéaire, on utilise fréquemment la notion de polynôme d endomorphisme (ou de matrice), qui est une combinaison linéaire de puissances (au sens de la composition de fonctions) de l endomorphisme. Pour un… …   Wikipédia en Français

  • Polynôme annulateur — Polynôme d endomorphisme En algèbre linéaire, on utilise fréquemment la notion de polynôme d endomorphisme (ou de matrice), qui est une combinaison linéaire de puissances (au sens de la composition de fonctions) de l endomorphisme. Pour un… …   Wikipédia en Français

  • Endomorphisme Nilpotent — Exemple d image d une base par un endomorphisme nilpotent en dimension 3. Un endomorphisme nilpotent est un morphisme d un objet mathématique sur lui même, qui, composé par lui même un nombre suffisant de fois, donne l application nulle. Un… …   Wikipédia en Français

  • Polynome caracteristique — Polynôme caractéristique En algèbre linéaire, à toute matrice carrée ou à tout endomorphisme d un espace vectoriel de dimension finie est associé un polynôme appelé polynôme caractéristique. Il renferme d importantes informations sur la matrice… …   Wikipédia en Français

  • Endomorphisme Linéaire — En mathématiques, un endomorphisme linéaire ou endomorphisme d espace vectoriel ou endomorphisme est une application linéaire d un espace vectoriel E dans lui même. L ensemble des endomorphismes d un espace vectoriel E est habituellement noté… …   Wikipédia en Français


We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.