Plus grand élément


Plus grand élément

Extremum

Page d'aide sur les redirections « Maximum » et « Minimum » redirigent ici. Pour les autres significations, voir Maximum (homonymie) et Minimum (homonymie).

Wiktprintable without text.svg

Voir « extremum » sur le Wiktionnaire.

L'expression « élément extremum » signifie « élément maximum » ou « élément minimum ».

Dans un ensemble ordonné, le plus grand élément (resp. plus petit élément) ou élément maximum (resp. élément minimum) d'une partie de cet ensemble est l'élément qui, quand il existe, appartient à cette partie et est supérieur (resp. inférieur) à tous autres éléments de la partie.

Sommaire

Propriétés

Le plus grand (resp. plus petit) élément d'une partie est donc en particulier :

  1. un élément maximal (resp. élément minimal) de la partie
  2. un majorant (resp. minorant) de la partie
  3. la borne supérieure (resp. borne inférieure) de la partie

... mais les réciproques sont fausses. On peut néanmoins énoncer les théorèmes suivants :

  • Si une partie admet un plus grand élément (resp. plus petit élément), alors il n'y a qu'un seul élément maximal (resp. minimal) et c'est le plus grand élément (resp. plus petit élément) de la partie.
  • Si une partie admet un majorant (resp. minorant) qui appartient à cette partie, alors la partie admet un plus grand élément (resp. plus petit élément) qui est précisément ce majorant (resp. minorant).

Exemple

  • Prenons pour ensemble ordonné E l'ensemble des intervalles réels ordonnés par la relation d'inclusion.
  • Choisissons comme partie P à étudier, l'ensemble des intervalles inclus dans [-1; 0 [\cup]0 ; 1].
  • Tout élément de P inclut l'ensemble vide, donc l'ensemble vide est un minorant de P. Or l'ensemble vide est élément de P, c'est donc aussi sa borne inférieure et son plus petit élément.
  • Tout élément de P est inclus dans l'intervalle [-1 ; 1] qui est élément de E mais pas de P. Donc [-1 ; 1] est un majorant de P, mais pas son plus grand élément. Malgré tout, c'est son plus petit majorant, donc sa borne supérieure.
  • Il n'existe aucun élément de P qui soit supérieur à ]0 ; 1]. ]0 ; 1] est donc un élément maximal de P. Mais il existe des éléments de P qui ne lui sont pas comparables, par exemple [1/2 ; 3/2]. Donc ]0 ; 1] n'est pas le plus grand élément de P. Et pour cause, il existe un autre élément maximal distinct : [-1 ; 0[, donc P n'a pas de plus grand élément !

Extremum d'une fonction

Soient ( F, ≤ ) un ensemble totalement ordonné et f une fonction de l'ensemble E vers l'ensemble F.

Notons D, l'ensemble de définition de f et soit a un élément quelconque de D.

On rappelle que si A est une partie de D ou D lui-même, alors la notation f(A) désigne l'image de A par la fonction f.

Extremum global d'une fonction

Un « extremum global de f » est un « maximum global de f » ou un « minimum global de f ».

Maximum global

On dit que f(a) est le « maximum » ou le « maximum global » de f si et seulement si pour tout élément x de D, on a f(x)f(a).

Cela équivaut à dire que f(a) est le plus grand élément de f(D).

Minimum global

On dit que f(a) est le « minimum » ou le « minimum global » de f si et seulement si pour tout élément x de D, on a f(a)f(x).

Cela équivaut à dire que f(a) est le plus petit élément de f(D).

Extremum local d'une fonction

La notion d'extremum local suppose définie sur D une structure topologique (donnant un sens précis à l'adjectif local). Dès lors, un « extremum local de f sur D » est un « maximum local de f sur D » ou un « minimum local de f sur D ».

Maximum local

Soit D un espace topologique. Étant donné un point a de D, on dit que f atteint en a un maximum local s'il existe un voisinage V de a tel que pour tout élément x de V, on ait f(a)f(x).
On dit alors que f(a) est un « maximum local » de f sur D.

Minimum local

Soit D un espace topologique. Étant donné un point a de D, on dit que f atteint en a un minimum local s'il existe un voisinage V de a tel que pour tout élément x de V, on ait f(a)f(x).
On dit alors que f(a) est un « minimum local » de f sur D.

Méthodes usuelles de recherche des extremums d'une fonction

La notion d'extremum d'une fonction est surtout intéressante en analyse lorsque l'ensemble d'arrivée F est l'ensemble totalement ordonné \R des nombres réels. Dans ce cas, le calcul différentiel est un moyen efficace de recherche des extremums locaux.

On cite ici quelques méthodes essentielles, en se limitant aux fonctions à valeurs réelles d'une ou plusieurs variables réelles.

Cas des fonctions réelles d'une variable réelle

Soit une fonction f : I \to\R, où I est un intervalle de \R non réduit à un point. Un point est intérieur à I si et seulement si c'est un élément de I qui n'est pas une borne de l'intervalle.

  • Existence d'extremums globaux (théorème des bornes) :
si I est fermé borné et si f est continue, alors f admet sur I un maximum global et un minimum global.
  • Condition nécessaire pour un extremum local :
si f atteint un extremum local en un point a intérieur à I et si elle est dérivable en ce point, alors \ f\,'(a) = 0.

Pour cette raison, l'étude des extremums passe souvent par la recherche des points d'annulation de la dérivée, appelés points critiques de f. Un point critique n'est pas nécessairement un extremum, comme le montre l'exemple de la fonction

f : \R \to\R,\, x \mapsto x^3

au point 0. On peut, cependant, sous certaines hypothèses supplémentaires, affirmer qu'un point critique est un extremum.

  • Condition suffisante pour un extremum local :
Si f est dérivable sur I, et si a est un point intérieur à I où la dérivée de f s'annule en changeant de signe, alors f atteint un extremum local en a. Plus précisément, en supposant \ f\,'(a) = 0 :
S'il existe α réel strictement positif tel que [a-\alpha,\, a + \alpha] \subset I
et f\,' \geq 0 sur [a-\alpha,\, a], f\,' \leq 0 sur [a,\, a + \alpha],
alors f atteint un maximum local en a.
S'il existe α réel strictement positif tel que [a-\alpha,\, a + \alpha] \subset I
et f\,' \leq 0 sur [a-\alpha,\, a], f\,' \geq 0 sur [a,\, a + \alpha],
alors f atteint un minimum local en a.
Remarque

La condition nécessaire pour un extremum local ne s'applique pas aux bornes de l'intervalle. Par exemple, la fonction

f : [0, 1] \to\R,\, x \mapsto x

admet deux extremums globaux (a fortiori locaux), atteints en 0 et 1. Par ailleurs, elle est dérivable et sa dérivée ne s'annule en aucun point.

Cas des fonctions réelles de plusieurs variables réelles

Soit une fonction f : A \to\R, x = (x_1,\, \dots,\, x_n) \mapsto f(x) = f(x_1,\, \dots,\, x_n), où A est une partie non vide de \R^n.

  • Existence d'extremums globaux (théorème des bornes) :
si A est fermé borné et si f est continue, alors f admet sur A un maximum global et un minimum global.
  • Condition nécessaire pour un extremum local :
On suppose ici que A est un ouvert, et que f est de classe C1 sur A.
Si f atteint un extremum local en un point a de A, alors \nabla f(a) = 0 : le gradient de f en ce point est nul.
Rappel : par définition, le gradient de f en a est le vecteur de \R^n : \nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a),\, \dots,\, \frac{\partial f}{\partial x_n}(a) \right).

Les points d'annulation du gradient portent le nom de points critiques de la fonction f.

  • Condition suffisante pour un extremum local :
On suppose ici que A est un ouvert, et que f est de classe C2 sur A.
On considère un point a de A. La (matrice) hessienne de f en a est notée \nabla^2 f(a)  ; elle est symétrique réelle.
Si \nabla f(a) = 0 et si \nabla^2 f(a) est définie négative, alors f atteint un maximum local en a.
Si \nabla f(a) = 0 et si \nabla^2 f(a) est définie positive, alors f atteint un minimum local en a.
Rappel : par définition, la hessienne de f en a est la matrice carrée d'ordre n ayant \frac{\partial^2 f}{\partial x_i\, \partial x_j}(a) pour élément en ligne i et colonne j.
Comme f est de classe C2, il résulte du théorème de Schwarz sur les dérivées partielles d'ordre 2 que la hessienne est symétrique.

Fonction optimum de deux fonctions

Les fonctions minimum et maximum de deux fonctions peuvent être définies à l'aides de valeurs absolues :

\operatorname{min} \left(f,g \right)=\frac{f+g-|f-g|}{2}

\operatorname{max} \left(f,g \right)=\frac{f+g+|f-g|}{2}

  • Portail des mathématiques Portail des mathématiques

Ce document provient de « Extremum ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Plus grand élément de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Plus petit élement — Extremum « Maximum » et « Minimum » redirigent ici. Pour les autres significations, voir Maximum (homonymie) et Minimum (homonymie) …   Wikipédia en Français

  • Plus petit élément — Extremum « Maximum » et « Minimum » redirigent ici. Pour les autres significations, voir Maximum (homonymie) et Minimum (homonymie) …   Wikipédia en Français

  • Plus grand commun diviseur — Pour une introduction à cette notion, consulter l article : PGCD de nombres entiers. En arithmétique élémentaire, le plus grand commun diviseur, abrégé en général PGCD, de deux nombres entiers naturels est le plus grand entier naturel qui… …   Wikipédia en Français

  • Element maximal — Élément maximal Sommaire 1 Définition 2 Exemples 3 Notions connexes 4 Voir aussi // …   Wikipédia en Français

  • Élément minimal — Élément maximal Sommaire 1 Définition 2 Exemples 3 Notions connexes 4 Voir aussi // …   Wikipédia en Français

  • élément — [ elemɑ̃ ] n. m. • Xe; « doctrine » fin IXe; lat. elementum I ♦ Partie constitutive d une chose. 1 ♦ Chacune des choses dont la combinaison, la réunion forme une autre chose. ⇒ 2. composant, composante, ingrédient, morceau, partie. Les éléments d …   Encyclopédie Universelle

  • Élément extremum — Extremum « Maximum » et « Minimum » redirigent ici. Pour les autres significations, voir Maximum (homonymie) et Minimum (homonymie) …   Wikipédia en Français

  • Élément maximum — Extremum « Maximum » et « Minimum » redirigent ici. Pour les autres significations, voir Maximum (homonymie) et Minimum (homonymie) …   Wikipédia en Français

  • Élément minimum — Extremum « Maximum » et « Minimum » redirigent ici. Pour les autres significations, voir Maximum (homonymie) et Minimum (homonymie) …   Wikipédia en Français

  • Élément maximal — Dans un ensemble ordonné, un élément maximal est un élément tel qu il n existe aucun autre élément de cet ensemble qui lui soit supérieur, c est à dire que a est dit élément maximal d un ensemble ordonné (E, ≤) si a est un élément de E tel… …   Wikipédia en Français