Oscillation des neutrinos


Oscillation des neutrinos

Oscillation de neutrinos

Pour consulter un article plus général, voir : neutrino.

L'oscillation du neutrino est un phénomène de la mécanique quantique, selon lequel un neutrino créé avec une certaine saveur leptonique (électron, muon ou tauon) peut être mesuré plus tard en ayant une saveur différente.

La probabilité d'avoir une mesure donnée de cette saveur varie de façon périodique alors que la particule se propage. L'oscillation du neutrino est d'intérêt tant théorique qu'expérimental, puisque l'observation de ce phénomène implique la non-nullité de la masse de la particule, ce qui ne rentre pas dans le cadre du modèle standard de la physique des particules.

Il existe 3 saveurs de neutrino pour chacun des leptons chargés :

  • le neutrino électronique νe ;
  • le neutrino muonique νμ ;
  • le neutrino tauique ντ.

Il s'agit en fait des états propres du lagrangien d'interaction, c’est-à-dire des seules solutions possibles de l'interaction faible. Or, le lagrangien de propagation, c’est-à-dire la manière dont les neutrinos se propagent, a des états propres différents, que l'on nommera ν1, ν2 et ν3. Une matrice d'éléments Uαi où α est un état propre d'interaction ( e, μ ou τ) et i un état propre de propagation (1, 2 ou 3) permet de passer d'une base à une autre. Ainsi, un neutrino électronique créé lors d'une interaction est une combinaison linéaire des trois états propres de propagation. Ces trois états propres se propagent à des vitesses différentes. Donc, en fonction de la distance parcourue et de l'énergie du neutrino initial, la combinaison de ν1, ν2 et ν3 évolue. C'est pourquoi, à un certain point de propagation, la combinaison peut correspondre à celle d'un neutrino muonique ou tauique. Le neutrino initialement électronique a changé de saveur : il s'agit de l'oscillation du neutrino.

Le processus ne peut être observé qu'à deux conditions :

  • les états propres d'interaction et de propagation doivent être différents ;
  • les neutrinos doivent avoir des masses différentes, ce qui explique leurs vitesses de propagation différentes.

Sommaire

Historique

En 1957-58, B. Pontecorvo considéra la possibilité d'une masse faible mais non nulle des neutrinos. La seule particule non massive connue est le photon pour une raison de symétrie. En effet, le principe d'invariance de jauge implique cette propriété mais il n'y a pas de tel principe pour les neutrinos. Pontecorvo a remarqué que rien n'impose que les états de saveurs des neutrinos soient des états propres de masse (propagation). Dans ce cas ils sont une combinaison linéaire des états propres de masse ν1, ν2, ν3. De plus en supposant les masses des neutrinos très faibles ceci implique l'existence d'oscillations de neutrinos en analogie avec les oscillations K^0\leftrightarrow\overline{K^0} des kaons neutres. Il a aussi montré que l'étude des oscillations des neutrinos permet une mesure très précise de leur masse. En effet, les tentatives de mesures directes des faibles masses des neutrinos permettent seulement d'établir des bornes supérieures très imprécises à cause de la faible sensibilité permise par l'expérience comparée au domaine de masse des neutrinos.

Oscillations dans le vide

Un état de masse est une superposition d'états de saveurs différents ; il interagit donc « faiblement » avec des couplages relatifs proportionnels aux coefficients de la combinaison linéaire correspondante. Comme ces coefficients varient suivant les oscillations, les couplages relatifs changent pendant la propagation.

Oscillations dans la matière

Lorsque les neutrinos traversent la matière, leurs interactions (faibles) avec le milieu modifient leur propriétés. Un neutrino dans la matière peut échanger un boson Z avec un électron, un proton ou un neutron. Le modèle standard précise que les 3 saveurs de neutrino peuvent interagir de cette manière, et que l'amplitude de cet échange de Z est indépendant de la saveur. La matière étant électriquement neutre, pour l'interaction avec échange de Z les contributions des protons et des électrons s'annulent. Il reste un potentiel VZ qui dépend seulement de la densité de neutron Nn et qui est le même pour les 3 saveurs. Le potentiel effectif pour les νe induit par leurs interactions courant chargé (boson W) avec les électrons de la matière est calculé égal à V_W=\sqrt{2}G_FN_e ; Ne étant la densité électronique du milieu traversé et GF la constante de Fermi. L'angle de mélange dans la matière θm est différent de l'angle dans le vide. Si la densité du milieu traversé varie, θm varie avec le temps au cours de la propagation et les états de masse sont fonctions du temps.

Voir aussi

  • Portail de la physique Portail de la physique
Ce document provient de « Oscillation de neutrinos ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Oscillation des neutrinos de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Oscillation de neutrinos — Pour consulter un article plus général, voir : neutrino. L oscillation du neutrino est un phénomène de la mécanique quantique, selon lequel un neutrino créé avec une certaine saveur leptonique (électron, muon ou tauon) peut être mesuré plus… …   Wikipédia en Français

  • Problème des neutrinos solaires — Le problème des neutrinos solaires est apparu récemment avec la création de structures permettant la détection des neutrinos, et en particulier Super Kamiokande dans les années 1990 au Japon. Il provient d une quantité trop faible de neutrinos… …   Wikipédia en Français

  • Probleme des neutrinos solaires — Problème des neutrinos solaires Le problème des neutrinos solaires est apparu récemment avec la création de structures permettant la détection des neutrinos, et en particulier Super Kamiokande dans les années 1990 au Japon. Il provient d une… …   Wikipédia en Français

  • Probleme des neutrinos atmospheriques — Problème des neutrinos atmosphériques Les rayons cosmiques interagissent dans les hautes couches de l atmosphère et produisent des pions et des kaons qui se désintègrent en muons et en neutrinos muoniques. Les muons se désintègrent à leur tour en …   Wikipédia en Français

  • Problème des neutrinos atmosphériques — Les rayons cosmiques interagissent dans les hautes couches de l atmosphère et produisent des pions et des kaons qui se désintègrent en muons et en neutrinos muoniques. Les muons se désintègrent à leur tour en νe, νμ et e − . Les particules… …   Wikipédia en Français

  • Neutrinos — Neutrino Neutrinos Propriétés générales Classification Leptons Composition élémentaires Propriétés physiques Masse • νe : < 2,5 eV.c 2 • νμ : < 170 keV.c 2 • ντ : < 18 MeV …   Wikipédia en Français

  • Oscillation de neutrino — Oscillation de neutrinos Pour consulter un article plus général, voir : neutrino. L oscillation du neutrino est un phénomène de la mécanique quantique, selon lequel un neutrino créé avec une certaine saveur leptonique (électron, muon ou… …   Wikipédia en Français

  • Oscillation du neutrino — Oscillation de neutrinos Pour consulter un article plus général, voir : neutrino. L oscillation du neutrino est un phénomène de la mécanique quantique, selon lequel un neutrino créé avec une certaine saveur leptonique (électron, muon ou… …   Wikipédia en Français

  • NEUTRINOS — Simple hypothèse mathématique en 1930, particule physique aux propriétés exotiques en 1956, le neutrino s’est révélé peu à peu être l’une des particules élémentaires les plus fondamentales de la physique. Il s’est aussi multiplié: on en connaît… …   Encyclopédie Universelle

  • Oscillation — Une oscillation est un mouvement ou une fluctuation périodique. Les oscillations sont soit à amplitude constante soit amorties. Elles répondent aux mêmes équations quel que soit le domaine. Sommaire 1 Mécanique 2 Électricité électronique 3… …   Wikipédia en Français