Nombres réels


Nombres réels

Nombre réel

Les nombres réels (dont l'ensemble est noté ℝ) peuvent très informellement être conçus en mathématiques comme tous les nombres associés à des longueurs ou des grandeurs physiques. Ce sont les nombres, qu'ils soient positifs, négatifs ou nuls, ayant une représentation décimale finie ou infinie. Autrement dit, ce sont les rationnels (qui peuvent s'écrire sous forme de fraction) complétés par les nombres dont la représentation décimale est infinie non périodique[1], tels la racine carrée de 2 et π. Ces derniers sont appelés nombres irrationnels. Parmi les nombres réels on distingue également les nombres algébriques et les nombres transcendants.

Le terme de nombre réel apparaît pour la première fois chez Georg Cantor en 1883 dans ses publications sur les fondements de la théorie des ensembles. C'est un rétronyme, donné en réponse à la découverte des nombres imaginaires. Les nombres réels sont au centre de la discipline mathématique de l'analyse réelle, à laquelle ils doivent une grande part de leur histoire.

La notation originale de l'ensemble des nombres réels est \textbf{R}. Cependant, les lettres grasses étant difficiles à écrire sur un tableau ou une feuille, la notation \mathbb{R} s'est imposée.

Représentation de la droite des réels avec des exemples de constantes réelles

Sommaire

Dans la vie courante

Les nombres réels peuvent représenter n'importe quelle mesure physique telle que : le prix d'un produit, la durée entre deux événements, l'altitude (positive ou négative) d'un site géographique, la masse d'un atome ou la distance de la plus lointaine des galaxies. Une partie des nombres réels est utilisée tous les jours, par exemple en économie, en informatique, en mathématique, en physique ou en ingénierie.

La plupart du temps, seuls certains sous-ensembles de réels sont utilisés :

Bien que tous ces sous-ensembles des réels soient de cardinal infini, ils sont tous dénombrables et ne représentent donc qu'une infime partie de l'ensemble des réels. Ils ont chacun des propriétés propres. Deux sont particulièrement étudiés : les nombres rationnels et les nombres algébriques ; on appelle « irrationnels » les réels qui ne sont pas rationnels et « transcendants » ceux qui ne sont pas algébriques.

En science

La physique utilise les nombres réels comme ensemble de mesure pour deux raisons essentielles :

  • Les résultats d'un calcul de physique utilisent fréquemment des nombres qui ne sont pas rationnels, sans que les physiciens ne prennent en compte la nature de ces valeurs dans leurs raisonnements.
  • La science utilise des concepts comme la vitesse instantanée ou l'accélération. Ces concepts sont issus de théories mathématiques pour lesquelles l'ensemble des réels est une nécessité théorique. De plus, ces concepts disposent de propriétés fortes et indispensables si l'ensemble des mesures est l'espace des nombres réels.

En revanche, le physicien ne peut réaliser des mesures de précision infinie. La représentation numérique du résultat d'un calcul peut être approchée aussi précisément qu'il le souhaite par un nombre décimal. Dans l'état actuel de la physique, il est même théoriquement impossible de réaliser des mesures de précision infinie. C'est pourquoi, aussi bien pour des besoins expérimentaux que théoriques, si le physicien calcule les mesures dans \R, il exprime les résultats numériques sous forme de nombres décimaux.

Ainsi le physicien utilise les propriétés des nombres réels qui permettent de donner un sens aux mesures qu'il réalise et offrent des théorèmes puissants pour démontrer ses théories. Pour les valeurs numériques, il se contente des nombres décimaux. Quand il mesure la distance que parcourt un solide sur un cercle complet, il utilise la valeur π sans se poser de question sur son existence, mais un nombre de décimales souvent petit lui suffit pour les calculs.

Enfin, bien que les nombres réels puissent représenter n'importe quelles grandeurs physiques, et bien que cet espace possède souvent plus de mesures qu'il n'est possible d'en utiliser, les nombres réels ne sont pas adaptés pour travailler sur de très nombreux problèmes physiques. Des « sur-ensembles » construits autour des réels ont été créés pour pouvoir manipuler certains espaces physiques. Par exemple :

  • l'espace \mathbb{R}^n , pour modéliser des espaces, par exemple de dimension 2, 3 (ou plus) ;
  • l'ensemble des nombres complexes dont la structure possède des propriétés plus fortes que celle de l'ensemble des nombres réels.

Considérations technologiques

Les nombres réels peuvent être représentés sous la forme d'un développement décimal infini. En théorie, n'importe quelle grandeur peut donc être représentée de la sorte. En pratique, ces nombres à développement décimal infini ne sont pas adaptés aux calculs et ne sont pas représentables sur des ordinateurs. Les économistes et les ingénieurs les utilisent sous une forme arrondie, en tronquant ou en arrondissant le développement décimal infini. Typiquement les commerçants font un arrondi à deux chiffres après la virgule.

Les informaticiens, bien que disposant des types de données telles que la virgule flottante (float ou double en pseudo-code anglais) et de la virgule fixe n'utilisent également que des approximations adaptées aux calculs informatiques. Pour représenter exactement certains réels sur un ordinateur, il faudrait disposer d'une mémoire infinie ou d'un processeur dédié aux calculs symboliques.

Premières remarques sur la notion de « développement décimal infini »

Tout nombre réel peut être représenté sous la forme de « nombre à développement décimal infini ». Cette définition peut sembler plus simple que d'autres utilisées couramment par les mathématiciens. Pourtant, elle apparaît rapidement comme peu adaptée et implique des définitions et des démonstrations bien plus complexes. En effet les nombres réels sont intéressants pour la structure et les propriétés de l'ensemble qu'ils forment : addition, multiplication, relation d'ordre, et les propriétés qui lient ces notions. Ces propriétés sont mal reflétées par la définition « développement décimal infini » et des problèmes théoriques apparaissent :

  • Certains nombres possèdent deux représentations.
Par exemple, le nombre x=0,9999... (les 9 se poursuivent à l'infini), vérifie l'équation 10x = 9+x. Le nombre y=1,000000... (les 0 se poursuivent à l'infini) en est également solution [2]. Or l'existence et l'unicité de solution à cette équation sont deux propriétés essentielles pour une définition univoque des réels. Pour remédier à cette situation, il devient nécessaire d'identifier les représentations décimales qui sont solutions d'une même équation : la définition devient plus complexe.
  • Utiliser un développement décimal fait jouer un rôle particulier à la base 10.
Cette difficulté n'est pas insurmontable. Elle est résolue par l'utilisation d'une base quelconque : on parle alors de développements en base p. Il est alors possible de démontrer que les ensembles construits à partir de ces bases sont isomorphes et que les propriétés des nombres réels sont valables dans toutes ces bases. Cependant les démonstrations deviennent lourdes, et la définition perd de sa simplicité.
En effet, les « retenues » se calculent de la droite vers la gauche, et un algorithme effectif demande de ne traiter qu'un nombre fini de décimales, c'est-à-dire de tronquer les nombres sur lesquels on calcule : il se peut donc qu'en tronquant aussi loin que l'on veut, on n'ait jamais la moindre décimale exacte, par exemple sur le calcul 0,33...+0,66...=1. Surmonter cette difficulté demande de faire appel à des notions de convergence, qui amènent naturellement vers d'autres modes de définition des réels.

Cependant, une fois établie la structure de l'ensemble des nombres réels, la notation par développement décimal permet des calculs effectifs, en gardant à l'esprit que ce n'est pas tant les décimales exactes d'un nombre qui comptent, que la position du nombre vis-à-vis des autres réels.

Aspect historique

Origine des nombres

Mise en place des fractions

Depuis l'Antiquité la représentation d'une grandeur mesurable — par exemple une longueur ou une durée — a répondu à un besoin. La première réponse fut la construction des fractions (quotient de deux entiers positifs). Cette solution, mise en place très tôt chez les Sumériens et les Égyptiens, est finalement performante. Elle permet d'approcher une longueur quelconque avec toute la précision souhaitée.

Correspondance avec des longueurs

Euclide

La première formalisation construite en système que l'on connaisse est le fruit du travail d'Euclide au IIIe siècle av. J.-C. Sa construction, inscrite dans les Éléments d'Euclide, apporte deux grandes idées d'un apport majeur dans l'histoire des mathématiques.

  • Les mathématiques sont formalisées avec des axiomes, des théorèmes et des démonstrations. On peut alors construire un système, avec des théorèmes dont les démonstrations s'appuient sur d'autres théorèmes. Les mathématiques sont classées en catégories, la géométrie et l'arithmétique en sont les deux plus grandes. Parler de construction prend alors tout son sens.
  • Un pont est bâti entre les deux grandes catégories. Cette démarche, permettant d'utiliser des résultats d'une des branches des mathématiques pour éclairer une autre branche est des plus fécondes. Les nombres sont alors mis en correspondance avec des longueurs de segments.

Problèmes d'incomplétude

Irrationalité de la racine carrée de 2

Le carré bleu est de surface double de celle du carré gris

L'approche d'Euclide met en évidence la première contradiction entre la notion de nombre de l'époque - les fractions - et le rôle qui leur est attribué, la représentation d'une grandeur mesurable.

  • Une longueur dont le carré est égal à 2 existe. Un raisonnement géométrique, déjà vieux à l'époque d'Euclide, montre qu'il est possible de construire un carré B de surface double de celle d'un carré initial A que l'on choisit de côté égal à 1. Si l'on note l la longueur du côté du carré B, qui est égale à la longueur de la diagonale du carré A, l'égalité l2 = 2 est alors vérifiée.
  • Une longueur dont le carré est égal à 2 n'existe pas sous forme de fraction. Quelques résultats sont déjà connus en arithmétique, par exemple le lemme d'Euclide. À partir de ce lemme on montre qu'aucun nombre ne peut être la racine carrée de 2. Ici, nombre signifie fraction positive non nulle car aucune autre formalisation n'est encore imaginable.

Les Éléments d'Euclide se fondent sur une axiomatique qui semble permettre de prouver à la fois qu'une proposition est vraie et fausse. Plus de deux millénaires seront nécessaires aux mathématiciens pour résoudre cette apparente contradiction, expliquer pourquoi les rationnels ne représentent qu'imparfaitement la droite réelle et trouver comment bien les représenter.

Trois siècles avant Euclide, Pythagore connaissait probablement l'irrationalité de certaines racines. En revanche, la première formalisation dans un véritable corpus mathématique construit nous vient d'Euclide.


Développement décimal illimité non périodique

Si les fractions permettent effectivement d'exprimer toute longueur avec la précision souhaitée, il faut néanmoins comprendre que les opérations et particulièrement la division deviennent complexes si le système de numération n'est pas adapté. Le problème est décrit par l'article fraction égyptienne qui propose quelques exemples concrets.

Il faut attendre le Ve siècle pour voir l'école indienne découvrir le concept du zéro et développer un système de numération décimal et positionnel.

Un deuxième problème apparaît alors. Toutes les fractions possèdent un développement décimal dans la mesure où ce développement est infini et périodique, c'est-à-dire que la suite des décimales ne s'arrête pas mais boucle sur un nombre fini de valeurs. La question se pose alors de savoir quel sens donner à un objet caractérisé par une suite de décimales non périodique. Par exemple, le nombre à développement décimal infini qui s'exprime comme

0,1010010001... où le nombre de 0 entre les chiffres 1 croît indéfiniment, correspond-il à une longueur ?


Suites et séries

Dans la deuxième moitié du XVIIe siècle, on assiste à un extraordinaire épanouissement des mathématiques dans le domaine du calcul des séries et des suites.

Nicolaus Mercator, les Bernoulli, James Gregory, Godfried Leibniz, et d'autres travaillent sur des séries qui semblent converger mais dont la limite n'est pas rationnelle. C'est le cas par exemple :

  • de la série de Mercator : \sum_{k=1}^\infty {(-1)^{k-1} \over k} = 1 - \frac 12+\frac 13- \frac 14 + \cdots qui converge vers \ln (2)\,
  • de la série de Gregory : \sum_{k=0}^\infty {(-1)^k \over {2k+1}} = 1 - \frac 13+\frac 15- \frac 17 + \cdots qui converge vers \pi/4\,

Pire, Liouville en 1844, prouve l'existence de nombres transcendants c'est-à-dire non racine d'un polynôme à coefficients entiers. Il ne suffit donc pas de compléter les rationnels en y ajoutant les nombres algébriques pour obtenir l'ensemble de tous les nombres.

  • des séries du type \sum_{k=1}^\infty \frac{a_k}{10^{k!}} = \frac{a_1}{10^{1}} + \frac{a_2}{10^{2}} + \frac{a_3}{10^{6}} + \frac{a_4}{10^{24}} + \cdots représentant les nombres de Liouville, où (an) est une suite d'entiers compris entre 0 et 9.

Le calcul infinitésimal

Gottfried Wilhelm von Leibniz

Durant la deuxième partie du XVIIe siècle, Isaac Newton et Gottfried Wilhelm von Leibniz inventent une toute nouvelle branche des mathématiques. On l'appelle maintenant l'analyse, à l'époque elle était connue sous le nom de calcul infinitésimal. Cette branche acquiert presque immédiatement une renommée immense car elle est la base d'une toute nouvelle théorie physique universelle : la théorie de la gravité newtonienne. Une des raisons de cette renommée est la résolution d'une vieille question, à savoir si la Terre tourne autour du Soleil ou l'inverse.

Or le calcul infinitésimal ne peut se démontrer rigoureusement dans l'ensemble des nombres rationnels. Si les calculs sont justes, ils sont exprimés dans un langage d'une grande complexité et les preuves procèdent plus de l'intuition géométrique que d'une explicitation rigoureuse au sens de notre époque.

L'impossibilité de la construction de l'analyse dans l'ensemble des fractions réside dans le fait que cette branche des mathématiques se fonde sur l'analyse des infiniment petits. Or, on peut comparer les nombres rationnels à une infinité de petits grains de sable (de taille infiniment petite) sur la droite réelle laissant infiniment plus de trous que de matière. L'analyse ne peut se contenter d'un tel support. Elle demande pour support un espace complet. Le mot est ici utilisé dans un double sens, le sens intuitif qui signifie que les petits trous en nombre infini doivent être bouchés et le sens que les mathématiciens donnent aujourd'hui plus abstrait mais rigoureusement formalisé.

Cette notion est tellement importante qu'elle deviendra à l'aube du XXe siècle une large branche des mathématiques appelée topologie.


La droite réelle

Si l'existence des nombres négatifs apparaît très tôt dans l'histoire (mathématiques indiennes), il faut attendre 1770 pour qu'ils obtiennent grâce à Euler un vrai statut de nombre et perdent leur caractère d'artifice de calcul. Mais il faut attendre encore un siècle pour voir l'ensemble des réels associé à l'ensemble des points d'une droite orientée, appelée droite réelle.

On considère une droite D contenant un point O que l'on appellera, par convention, origine. Soit un point I distinct de O appartenant à D que l'on identifie au nombre 1. Par convention, on dira que la distance de O à I est égale à 1 et que l'orientation de la droite est celle de O vers I. À tout point M de la droite, on associe la distance entre O et M. Si M et I sont du même côté par rapport à O alors la distance est comptée positivement, sinon elle est négative.

Cette relation que la formalisation actuelle appelle bijection permet d'identifier un nombre réel à un point d'une droite.

Droite réelle
L'abscisse du point Q est égale à -\frac{OQ}{OI}=-3, OI et OQ désignant les distances de O à I et de O à Q respectivement

Après 2200 ans : la solution

La construction

Augustin Louis Cauchy

Article détaillé : Construction des nombres réels

L'analyse permet une intuition de plus en plus précise sur la topologie des nombres. Un siècle sera alors suffisant pour permettre de construire rigoureusement les nombres réels c'est-à-dire boucher les trous.

Richard Dedekind

Comme parfois en mathématiques, une fois le problème arrivé à maturité, ce n'est pas un, mais deux penseurs qui résolvent la difficulté.

Le premier à avoir défini un concept permettant de résoudre la problématique de la construction des nombres réels est Augustin Louis Cauchy. Son approche est restée la plus fructueuse. Elle s'applique à bien d'autres cas que celui des nombres réels. Son idée est la suivante: une suite de nombres devrait converger (c'est-à-dire avoir une limite), si, au bout d'un certain temps, tous les éléments de la suite sont à une distance les uns des autres aussi petite que l'on veut. Cette idée est formalisée dans l'article suite de Cauchy. Considérons la suite 1 puis 1,4 puis 1,41 et ainsi de suite en alignant une par une toutes les décimales de \sqrt 2, cette suite vérifie le critère de Cauchy. Sa limite est un bon candidat pour représenter la racine carrée de 2 et cette approche permet de construire les nombres réels. Ce n'est que vers la fin du XIXe siècle que cette idée permet une construction rigoureuse de l'ensemble des réels qui est réalisée par deux mathématiciens Cantor en 1872 et Méray en 1869.

Le second est Richard Dedekind qui, en 1872, propose dans son ouvrage Was sind und was sollen die Zahlen (ce que sont et ce que doivent être les nombres) une méthode plus simple en étudiant la relation d'ordre sur les fractions. Son idée consiste à considérer les coupures, par exemple tous les nombres négatifs ou dont le carré est plus petit que 2. Cet objet est aussi un bon candidat pour représenter la racine carrée de 2.

Il existe une autre méthode à partir des développements décimaux, cependant l'addition puis la multiplication ne sont pas des opérations simples à définir. C'est probablement cette raison qui fait de cette approche la moins populaire.

Ces méthodes construisent toutes le même ensemble, celui des nombres réels.

La solution est plus riche que prévue

Carl Friedrich Gauss

Le XIXe siècle montre que cette nouvelle structure, l'ensemble des nombres réels, ses opérations et sa relation d'ordre, non seulement remplit ses promesses mais va au-delà.

  • Les développements décimaux infinis ont maintenant un sens. De plus, il devient possible de mieux comprendre les nombres réels et de les classifier. Ainsi, en dehors des fractions rationnelles on découvre le corps des nombres algébriques, c'est-à-dire des nombres qui sont racines d'un polynôme à coefficients entiers. Une nouvelle famille de nombres est exhibée : les transcendants qui ne sont racines d'aucune équation polynomiale à coefficients entiers. Les propriétés de ces nombres permettent la démonstration de vieilles conjectures comme la quadrature du cercle.
  • Enfin, le Théorème de Rolle est généralisé et permet la démonstration d'un résultat essentiel pour l'analyse. Le comportement infinitésimal d'une fonction, par exemple le fait que la dérivée soit toujours positive, permet de déduire un comportement global. Cela signifie par exemple, que si un solide se déplace sur une droite avec une vitesse instantanée toujours positive, alors le solide a avancé, c'est-à-dire qu'il s'est déplacé positivement (vers « l'avant ») par rapport à l'origine. Cette problématique qui avait arrêté les Grecs, incapables de résoudre les paradoxes de Zénon, est définitivement comprise. Ce résultat, que l'intuition déclare évident, a demandé des siècles d'efforts.
  • Dans le développement du calcul infinitésimal, la manipulation des infiniment petits peut alors être abordée différemment. L'ensemble des nombres réels ne pourra satisfaire tous les mathématiciens. Dans les années 1960, Abraham Robinson met en place la notion de nombre hyperréel et permet le développement de l'analyse non standard. Cette nouvelle théorie permet d'exprimer et de démontrer plus simplement certains résultats fondamentaux comme le Théorème de Bolzano-Weierstrass.

Nature : mathématiques et philosophie

L'évolution des concepts de nombre réel et de continuité est tout aussi philosophique que mathématique. Que les nombres réels forment une entité continue veut dire qu'il n'y a pas de « saut » ou de « bande interdite ». Intuitivement, c'est tout comme la perception humaine de l'espace ou de l'écoulement du temps. Certains philosophes conçoivent qu'il en est d'ailleurs exactement de même pour tous les phénomènes naturels. Ce concept est résumé par la devise du mathématicien et philosophe Leibniz : natura non facit saltus, « la nature ne fait pas de sauts ».

De la Grèce antique au début des Temps modernes

L'histoire de la continuité débute en Grèce antique. Au Ve siècle av. J.-C., les atomistes ne croient pas seulement que la nature est faite de « sauts », mais aussi qu'il existe des particules de base non divisibles, les atomes. Les synéchistes quant à eux clament que tout est connecté, continu [3]. Démocrite est un tenant d'une nature faite d'atomes intercalés de vide, tandis que Eudoxe le contredit, faisant de ses travaux certains des plus anciens précurseurs de l'analyse. Ceux-ci évoluent plus tard en ce que l'on connaît sous le nom de géométrie euclidienne.

Encore au XVIIe siècle, des mathématiciens énonçaient qu'une fonction continue est en fait constituée de lignes droites infiniment petites, c'est-à-dire infinitésimales. C'est ainsi que le concept d'infiniment petit, vu dans l'optique atomiste, peut promouvoir cette façon de concevoir la nature. La question d'infini est donc centrale à la compréhension de la continuité et des nombres réels.

Les paradoxes de Zénon illustrent la contre-intuitivité de la notion d'infini. L'un des plus connus est celui de la flèche, dans lequel on imagine une flèche en vol. À chaque instant, la flèche se trouve à une position précise et si l'instant est trop court, alors la flèche n'a pas le temps de se déplacer et reste au repos pendant cet instant. Les instants suivants, elle reste immobile pour la même raison. La flèche est toujours immobile et ne peut pas se déplacer : le mouvement est impossible. Pour résoudre ce paradoxe, il faut additionner ces infiniment petits un nombre infini de fois, par la méthode de la limite, découverte au cours de l'évolution de l'analyse.

Histoire de l'analyse

Article détaillé : Histoire de l'analyse.

Le concept de continuité des nombres réels est central en analyse, dès le début de son histoire. Une question fondamentale est de déterminer si une fonction donnée est en fait une fonction continue. Au XVIIIe siècle, on formulait cette question comme « est-ce qu'une variation infinitésimale dans son domaine engendre une variation infinitésimale dans son image ? » Au XIXe siècle, cette formulation est abandonnée et remplacée par celle des limites.

Dès le XVIIIe siècle, les infinitésimales tombent en disgrâce : elles sont dites d'utilité pratique, mais erronées, non nécessaires et contradictoires. Les limites les remplacent tout à fait et à partir du début du XXe siècle, les infinitésimales ne sont plus le soubassement de l'analyse. En mathématiques elles demeurent en quelque sorte des non-concepts, jusqu'à ce qu'on les réintroduise à grands frais en géométrie différentielle, leur donnant le statut mathématique de champ tensoriel.

Dans les sciences appliquées, en particulier en physique et en génie, on se sert toujours des infinitésimales. Ceci cause évidemment des problèmes de communication entre ces sciences et les mathématiques.

Définitions axiomatiques de \mathbb R et premières propriétés

Si l'on souhaite être bref, on peut caractériser l'ensemble des nombres réels que l'on note en général \mathbb R, par la phrase de David Hilbert : \mathbb R est le dernier corps commutatif archimédien et il est complet. « Dernier » signifie que tout corps commutatif archimédien est isomorphe à un sous ensemble de \mathbb R. Ici « isomorphe » signifie intuitivement qu'il possède la même forme, ou se comporte exactement de la même manière, on peut donc sans grande difficulté, dire qu'ils sont les mêmes.

Approche axiomatique

David Hilbert

Une approche axiomatique consiste à caractériser un concept par une ou une série de définitions. Ce point de vue, dont Hilbert est le précurseur dans son formalisme moderne, s'est révélé extrêmement fécond au XXe siècle. Des notions comme la topologie, la théorie de la mesure, ou les probabilités se définissent maintenant par une axiomatique. Une approche axiomatique suppose une compréhension parfaite de la structure en question et permet une démonstration des théorèmes uniquement à partir de ces définitions. C'est la raison pour laquelle de bonnes définitions peuvent en mathématiques s'avérer si puissantes. L'approche axiomatique de \mathbb R ne montre néanmoins pas son existence. Il apparaît alors nécessaire de construire cette structure. Cette question est traitée dans l'article Construction des nombres réels.

La définition axiomatique nous est essentiellement donnée en introduction. \mathbb R est l'unique corps archimédien complet, un tel corps est nécessairement commutatif. Mais on trouve aussi d'autres définitions axiomatiques qui lui sont équivalentes. Ainsi :

\R est l'unique corps totalement ordonné qui satisfait l'axiome de la borne supérieure.
\R est l'unique corps totalement ordonné qui satisfait le lemme de Cousin.

L'unicité signifie ici que, si K est un corps totalement ordonné possédant la propriété de la borne supérieure, il existe un unique isomorphisme strictement croissant de K dans \R.

  • \mathbb R est un corps. \mathbb R a donc une structure algébrique pure, autrement dit toutes ses lois sont internes. En effet l'addition (respectivement la multiplication) s'appliquent à deux nombres réels pour donner un troisième nombre réel. \mathbb R est un corps commutatif. Ses deux opérations, l'addition et la multiplication, possèdent donc toutes les propriétés usuelles.
  • \mathbb R est un corps totalement ordonné . Cela signifie que tous les nombres peuvent être comparés entre eux (l'un est soit plus grand, soit plus petit, soit égal à l'autre) et que cette relation respecte l'addition et la multiplication. En langage mathématique on a:
    • \forall (a,b,c) \in \mathbb{R}^3 \quad a>b \;  \Rightarrow a+c>b+c\;;
      \forall (a,b) \in \mathbb{R}^2, \forall c \in \mathbb{R}_+^*\quad a>b \;  \Rightarrow a\times c>b\times c\;
  • L'axiome de la borne supérieure s'exprime de la manière suivante : si un ensemble A est non vide et majoré, autrement dit s'il existe un nombre donné plus grand ou égal à chaque élément de A; alors A admet une borne supérieure, c'est le plus petit des majorants.

Ce dernier axiome différencie \mathbb R de tous les autres corps. Il existe en effet une infinité de corps commutatifs totalement ordonnés, mais un seul satisfait l'axiome de la borne supérieure.

  • \mathbb R est archimédien. Cela signifie que si l'on considère un nombre a strictement positif, par exemple 2 et que l'on considère la suite a, 2a, 3a, ... C’est-à-dire dans notre exemple 2, 4, 6, ... alors on obtiendra dans la suite, des nombres aussi grands que l'on veut. En langage mathématique, cela s'écrit :
\forall (a,b) \in {\mathbb{R}_+^*}^2 \;\exists n \in \mathbb{N} \quad n\cdot a > b\;
  • \mathbb R est un corps complet. C'est-à-dire que toute suite de Cauchy réelle converge.


Premières propriétés

Archimède, Domenico Fetti, 1620
Musée Alte Meister, Dresden, Allemagne

Cette section est essentiellement technique. Elle traite des propriétés essentielles et élémentaires pour un travail analytique sur \mathbb R.

La propriété suivante provient du fait que \R est archimédien.

  • Entre deux réels distincts, il existe toujours un rationnel et un irrationnel.

Les autres propriétés sont des conséquences de la propriété de la borne supérieure.

  • Tout ensemble non vide et minoré de \mathbb R admet une borne inférieure.
  • Toute suite croissante et majorée dans \mathbb R est convergente.
  • Toute suite décroissante et minorée dans \mathbb R est convergente.
  • Deux suites adjacentes convergent vers la même limite. On appelle suites adjacentes deux suites, l'une croissante, l'autre décroissante, dont la différence tend vers 0.



Clôture algébrique

Il existe un ensemble de fonctions particulièrement intéressantes, les polynômes. Un polynôme peut parfois être factorisé. C'est-à-dire qu'il s'exprime sous la forme de produit de polynômes non constants de degrés plus petits. L'idéal étant que l'on puisse factoriser tout polynôme en facteurs de degré 1 (c'est-à-dire sous la forme ax+b\;). Cette propriété dépend du corps sur lequel on construit ces polynômes. Par exemple sur le corps des rationnels, quel que soit n entier supérieur ou égal à deux, il existe des polynômes de degré n irréductibles, c'est-à-dire que l'on ne peut pas les exprimer sous forme de produit de polynômes de degrés plus petits. Pour les nombres réels, on démontre que le plus grand degré d'un polynôme irréductible est égal à deux. En d'autres termes, si le polynôme ne se décompose pas, c'est qu'il est de la forme ax^2+bx+c\;. Les corps qui n'ont comme polynômes irréductibles que les polynômes de degré 1 sont dit algébriquement clos.

Si \mathbb R n'est pas algébriquement clos, on peut plonger ce corps dans un corps plus vaste. Il s'agit d'un nouveau corps, le corps des nombres complexes. Cependant ce corps n'est pas globalement « meilleur ». Sa clôture algébrique est une propriété fort intéressante, mais elle a un coût : le corps des complexes ne peut pas posséder de relation d'ordre compatible avec ses deux opérations. En quelque sorte, ce qui est gagné d'un côté est perdu d'un autre.

Topologie

La raison d'être des nombres réels est d'offrir un ensemble de nombres avec les bonnes propriétés permettant la construction de l'analyse. Deux approches utilisant deux concepts différents sont possibles.

  • On peut utiliser la notion d'espace métrique qui sur \mathbb R associe la distance usuelle. Cette distance, que l'on ici note d\;, était déjà utilisée par Euclide. Elle est définie de la manière suivante:
\forall (x,y)\in \mathbb{R}^2, d(x,y)=|y-x|\;
Ce concept est le plus intuitif et en général demande des démonstrations un peu plus naturelles. C'est souvent à partir de ce concept que les propriétés analytiques de \mathbb R sont développées et prouvées.
  • On peut aussi utiliser la théorie de la topologie. Cette théorie est plus générale que celle associée à la distance. Tout espace métrique est associé à un espace topologique. Mais la réciproque n'est pas vraie.

L'élégance favorise la base axiomatique la plus faible. Au XXe siècle un travail de reformulation générale des mathématiques est entrepris par l'association Bourbaki et se traduit par la rédaction d'un ouvrage appelé Éléments de mathématique. Cet ouvrage traite, de manière rigoureuse, d'une vaste partie des mathématiques actuelles. Pour cette raison, les Éléments développent et démontrent les propriétés de l'ensemble des réels à partir de la topologie. C'est le choix que nous suivrons ici.


Cardinalité

Article détaillé : Histoire de la logique.
Article détaillé : Nombre transfini.

Combien y a-t-il de nombres réels ? Une infinité, mais laquelle ? Il existe plusieurs cardinaux infinis. Ici cardinal peut se comprendre naïvement comme le nombre d'éléments que contient un ensemble. Dans le cas où les ensembles ne sont pas finis, notre première intuition est trompeuse. Pour comprendre le piège, comparons le cardinal des nombres entiers positifs et des nombres pairs positifs. Notre premier réflexe est de dire que le cardinal des entiers positifs est plus grand car cet ensemble contient, non seulement les nombres pairs mais en plus les nombres impairs, donc deux fois plus de nombres. Puis on peut se dire que l'application qui, à un nombre entier positif, associe le double de ce nombre, montre une correspondance bijective, c'est-à-dire qui associe à chaque nombre de l'ensemble de départ un et un unique élément dans l'ensemble d'arrivée. Notre premier réflexe n'est pas le bon et ne permet pas de construire de théorie des cardinaux. Les deux cardinaux sont en fait égaux. En fait, l'ensemble des entiers positifs et l'ensemble des entiers pairs positifs (ou impairs positifs) correspondent à un même cardinal dit dénombrable. Autrement dit, il y a autant de nombres entiers positifs que de nombres pairs (ou impairs) positifs !

Qu'en est-il du cardinal des nombres rationnels ? Il semble infiniment plus grand que celui des entiers car entre deux entiers il existe une infinité de fractions. Cependant, il est encore possible d'établir une bijection entre l'ensemble des entiers et celui des fractions. La démonstration en est donnée dans l'article ensemble dénombrable.

Posons nous alors la même question pour l'ensemble \mathbb R. Son cardinal n'est pas dénombrable, il est supérieur à celui des nombres entiers. Le cardinal des nombres rationnels est noté \aleph_0\; et se prononce aleph 0. Celui des nombres réels est noté c\; ou 2^{\aleph_0}\; et il est appelé le cardinal du continu. D'où provient ce changement d'échelle de cardinal ? En fait, les rationnels et même les nombres algébriques ont toujours un cardinal dénombrable. L'ensemble des nombres réels possède le cardinal du continu. Ils sont donc infiniment plus nombreux que les nombres algébriques et donc que les nombres entiers. Georg Cantor, génial inventeur de l'argument de la diagonale, établit cette théorie et se pose la question de l'existence d'un cardinal strictement plus grand que celui des nombres rationnels et strictement plus petit que celui des nombres réels. Son hypothèse est qu'un tel cardinal n'existe pas, on l'appelle l'hypothèse du continu. Cette conjecture est fondamentale dans l'histoire des mathématiques à deux titres :

  • Tout d'abord la question des cardinaux a été englobée par Cantor dans une théorie plus vaste, la théorie des ensembles, qui sert maintenant de fondement à toute la Mathématique. L'intégralité du formalisme et de la construction des mathématiques possède pour fondation cette théorie.
  • Ensuite la réponse à la question de l'hypothèse du continu est réellement étrange, il a fallu attendre la deuxième moitié du XXe siècle pour la trouver. Elle est indécidable. Cela signifie qu'il est aussi impossible de démontrer l'existence d'un tel ensemble, que de montrer que cet ensemble n'existe pas, si l'on ne modifie pas la base axiomatique utilisée, ce qui par exemple débouche sur la théorie de l'analyse non standard.

Une rumeur prétend que cette question a fini par rendre Cantor fou. Ce que l'on peut affirmer, c'est que Cantor a travaillé sur ce problème, qu'il ne l'a jamais résolu et qu'il était atteint d'une psychose maniaco-dépressive.


Construction des nombres réels

Article détaillé : construction des nombres réels.

Sources

Liens internes

Liens externes

Références

Histoire des mathématiques

  • Richard Mankiewicz Christian Jeanmougin Denis Guedj, Une histoire des mathématiques, Éditions Seuil
  • Denis Guedj, L'empire des nombres, Éditions Gallimard
  • J. Dhombres et al., Mathématiques au fil des âges [détail des éditions]
  • Nicolas Bourbaki, Éléments d'histoire des mathématiques, Édition Masson

Livres historiques de mathématiques

Références sur les nombres réels et l'analyse élémentaire

Notes

  1. En effet, un nombre (réel) est rationnel si son développement décimal est périodique. Par exemple, 1/3=0,333333... est bien rationnel.
  2. Voir aussi Démonstration de l'égalité entre 0,9999... et 1.
  3. (en) Continuity and Infinitesimals, de l'encyclopédie de philosophie Stanford, en ligne.
  • Portail des mathématiques Portail des mathématiques
Goldenwiki 2.png
La version du 4 avril 2006 de cet article a été reconnue comme « article de qualité » (comparer avec la version actuelle).
Pour toute information complémentaire, consulter sa page de discussion et le vote l’ayant promu.

Ce document provient de « Nombre r%C3%A9el ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Nombres réels de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Construction des nombres réels — En mathématiques, il existe différentes constructions des nombres réels, dont les deux plus connues sont les coupures de Dedekind, les suites de Cauchy. Sommaire 1 Construction intuitive à partir des nombres décimaux 2 Construction par les… …   Wikipédia en Français

  • Construction Des Nombres Réels — Il existe différentes constructions des nombres réels, dont les deux plus rigoureuses sont les coupures de Dedekind, les suites de Cauchy. Sommaire 1 Construction intuitive à partir des nombres décimaux 2 Construction par les coupures de Dedekind …   Wikipédia en Français

  • Construction des nombres reels — Construction des nombres réels Il existe différentes constructions des nombres réels, dont les deux plus rigoureuses sont les coupures de Dedekind, les suites de Cauchy. Sommaire 1 Construction intuitive à partir des nombres décimaux 2… …   Wikipédia en Français

  • RÉELS (NOMBRES) — Par les différents adjectifs généralement accolés au substantif commun qu’est le nombre, la langue mathématique familière surprend et inquiète, car elle risque de susciter des confusions: nombres rationnels (d’autres nombres seraient donc sans… …   Encyclopédie Universelle

  • NOMBRES (THÉORIE DES) - Nombres algébriques — Les mathématiciens grecs avaient découvert que certains rapports de grandeurs ne sont pas rationnels, c’est à dire qu’ils ne sont pas égaux au rapport de deux entiers: il en est ainsi du rapport de la diagonale d’un carré à son côté, puisque… …   Encyclopédie Universelle

  • Nombres De Feigenbaum — En mathématiques, les nombres de Feigenbaum ou constantes de Feigenbaum sont deux nombres réels découverts par le mathématicien Mitchell Feigenbaum en 1975. Tous deux expriment des rapports apparaissant dans les diagrammes de bifurcation de la… …   Wikipédia en Français

  • Nombres de feigenbaum — En mathématiques, les nombres de Feigenbaum ou constantes de Feigenbaum sont deux nombres réels découverts par le mathématicien Mitchell Feigenbaum en 1975. Tous deux expriment des rapports apparaissant dans les diagrammes de bifurcation de la… …   Wikipédia en Français

  • Réels — Nombre réel Les nombres réels (dont l ensemble est noté ℝ) peuvent très informellement être conçus en mathématiques comme tous les nombres associés à des longueurs ou des grandeurs physiques. Ce sont les nombres, qu ils soient positifs, négatifs… …   Wikipédia en Français

  • Nombres complexes — Nombre complexe Pour les articles homonymes, voir complexe. Les nombres complexes forment une extension de l ensemble des nombres réels. Ils permettent notamment de définir des solutions à toutes les équations polynomiales à coefficients réels.… …   Wikipédia en Français

  • Nombres imaginaires — Nombre complexe Pour les articles homonymes, voir complexe. Les nombres complexes forment une extension de l ensemble des nombres réels. Ils permettent notamment de définir des solutions à toutes les équations polynomiales à coefficients réels.… …   Wikipédia en Français


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.