NASA X-43 Scramjet


NASA X-43 Scramjet
Pix.gif X-43 Scramjet Silhouette d’un avion militaire.
X-43A technicians.jpg
Un X-43 accroché sous l'aile de son avion porteur : le NB-52B Balls 8

Rôle Expérimental
Équipage
Sans pilote
Motorisation
Type Statoréacteur atmosphérique
Dimensions
Envergure 1,5 m
Longueur 3,65 m
Hauteur 0,6 m
Masses
À vide 1 200 kg
Performances
Vitesse maximale 11 000 km/h (Mach 10)
Plafond 29 000 m
Rayon d’action 15 000 km

Le X-43A Scramjet a battu, le 16 novembre 2004, le record mondial de vitesse pour un avion propulsé avec un statoréacteur atmosphérique (puisant l'oxygène dans l'atmosphère) en atteignant brièvement 11 000 km/h (Mach 10), soit près de cinq fois la vitesse du Concorde. Il détenait déjà le précédent record, établi le 27 mars 2004, à 7 700 km/h (Mach 7), soit près de quatre fois la vitesse du Concorde.

Le précédent record de vitesse était détenu depuis le 30 octobre 2001 par une équipe de l'université du Queensland en Australie. Celle-ci avait lancé le Hyshot, un statoréacteur monté sur une puissante fusée-sonde à deux étages, la Terrier-Orion. La vitesse atteinte avait été de plus de Mach 7 pendant environ 5 secondes.

Sommaire

Conception

Le X-43A est un appareil sans pilote de petite taille, de profil plat et aux lignes effilées de conception Waverider : 3,65 m de long, 1,5 m d'envergure, 0,60 m de hauteur et un poids de 1,2 tonne.

Le principe de propulsion du « scramjet » date du début du XXe siècle, il a été imaginé en 1913 par l'ingénieur français René Lorin. Depuis les années 1940, les ingénieurs tentaient de rendre cette technique applicable avec les missiles air-sol moyenne portée.

Selon Joel Sitz, un des responsables du projet de la NASA, la technologie du « Scramjet est le Saint-Graal de l'aéronautique ». Dans un réacteur classique, l'air entrant est comprimé par un compresseur et mélangé avec le carburant, puis détendu dans une turbine et expulsé du réacteur à une vitesse supérieure à celle de son entrée. Or, pour des raisons mécaniques, les turbines ne peuvent dépasser une certaine vitesse de rotation.

Le statoréacteur fonctionne sur le même principe mais sans pièce mobile, en fait c'est la forme de la prise d'air qui remplace la turbine :

  1. le flux d'air entrant à la vitesse supersonique est compressé et passe dans le moteur ;
  2. de l'hydrogène est injecté dans le flux d'air et s'enflamme en réagissant avec l'oxygène que celui-ci contient.
  3. l'expansion rapide des gaz chauds engendre la poussée.

Le problème principal vient de ce qu'un statoréacteur a besoin d'atteindre une certaine vitesse pour s'auto-alimenter, à l'aide d'un avion porteur comme le bombardier B-52, par exemple ou à l'aide d'un turbo-réacteur comme dans le cas du Leduc 022 ou du Nord 1500 Griffon II. Mais le problème ne s'arrête pas là : comme les industriels français l'on constaté dans les années cinquante, le statoréacteur ne fonctionne pas au meilleur de son rendement à « faible » vitesse : à Mach 1, les fameux Leduc laissaient dans les gaz de tuyère du carburant non consommé. Même à plus de Mach 2, le Nord 1500 Griffon II avait le même inconvénient. Les alliages de l'époque ne permettant pas de supporter des vitesses plus élevés, le projet de statoréacteur fut abandonné.

Avec le développement de nouveau alliages et des matériaux céramiques, on a pu, au cours des dernières années, se relancer dans des projets de vitesse hypersonique (> Mach 5), là où le rendement d'un statoréacteur ou d'un superstatoréacteur est maximum en théorie si la combustion se fait assez rapidement pour être achevée avant la sortie de la tuyère et donc délivrer la poussée maximale.

La NASA, souhaitant étudier le fonctionnement à plein régime et sans perte d'un statoréacteur, décida d'adapter son appareil test sur une fusée Pegasus. Cet engin put atteindre une vitesse largement hypersonique d'environ Mach 6. Cette vitesse initiale a ainsi pu révéler tout le potentiel du X-43 et de son moteur statique amélioré.

Planification pour un record à Mach 10

Essai d'un modéle réduit de X-43
Le B-52B décolle emportant le X-43A
La fusée Pegasus propulse l'engin X-43A

L'avion X-43A est fixé sur le nez d'une fusée Pégasus capable de le propulser à une vitesse supérieure à Mach 6. Cette fusée est elle-même fixée sous l'aile droite d'un bombardier géant octoréacteur B-52 modifié pour l'expérience.

  • Dans un premier temps, le bombardier géant est monté jusqu'à un peu moins de 13 000 mètres, et a largué la fusée Pégasus.
  • La fusée de 15 m a propulsé l'avion X-43A en 90 secondes jusqu'à une altitude de 29 000 mètres en lui impulsant une vitesse supérieure à Mach 7, et l'a largué.
  • Le statoréacteur de l'avion X-43A, alors en vol libre, s'est allumé et a fonctionné pendant 10 secondes, le faisant voler de façon indépendante à Mach 10 pendant cette période.
  • L'avion a ensuite effectué une série de manœuvres aérodynamiques alors qu'il était en vol plané contrôlé pendant environ six minutes avant de plonger dans l'océan Pacifique.

Histoire

La course au record de vitesse hypersonique a débuté dans les années 1950. Le 3 octobre 1967, un pilote de l'US Air Force avait atteint la vitesse record de (Mach 6,7), soit 7300km/h à bord d'un avion dénommé X-15. L'engin était alors un avion-fusée capable d'atteindre une altitude de 100 km.

Le programme de l'avion à statoréacteur est une partie de l'ambitieux projet lancé en 1986 par le président Ronald Reagan. À l'époque, les ingénieurs espéraient des vols Paris-New-York en quarante minutes avant l'an 2000. Le programme X-43A de l'avion à statoréacteur fut marqué par l'échec du premier essai, en juin 2001. Il bénéficie aujourd'hui d'un budget de 230 millions de dollars sur sept ans.

Applications

Selon Vincent Rausch, le patron du projet d'avion hypersonique de la NASA : « Ce pourrait être le début d'une révolution dans l'aviation ». Cependant, malgré l'enthousiasme des ingénieurs de la NASA, il semble que les débouchés du statoréacteur envisageables aujourd'hui soient essentiellement militaires et spatiaux : missiles de croisière plus rapides, et lanceurs de satellites moins lourds et donc plus rentables.

L'utilisation de l'oxygène de la haute atmosphère comme comburant permettra d'éviter l'emport dans les fusées de trop volumineux et trop lourds réservoirs. Seuls des réservoirs de taille réduite seront nécessaires pour assurer l'alimentation en oxygène nécessaire à la propulsion pour dépasser la vitesse de Mach 6. Au-delà, le statoréacteur prendra le relais en utilisant l'oxygène extérieur.

Voir aussi


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article NASA X-43 Scramjet de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Scramjet — Superstato Articles principaux : Propulsion des aéronefs et Moteur à réaction. Le superstato ou statoréacteur à combustion supersonique (scramjet pour supersonic combustion ramjet en anglais) est une évolution du statoréacteur, système de… …   Wikipédia en Français

  • Scramjet — Part of a series on Aircraft propulsion Shaft engines (to drive pr …   Wikipedia

  • NASA X-43 — NASA technicians working on the X 43A at the tip of a Pegasus rocket mounted to a Boeing B 52B prior to launch on March 27, 2004. The X 43 is an unmanned experimental hypersonic aircraft with multiple planned scale variations meant to test… …   Wikipedia

  • NASA Ames Research Center — (ARC) is a NASA facility located at Moffett Federal Airfield, which covers 43 acres at the borders of the cities of Mountain View and Sunnyvale in California. This research center is most commonly called NASA Ames. The current NASA Ames Center… …   Wikipedia

  • Scramjet programs — This page describes a number of research and testing programs for the development of supersonic combustion ramjets (scramjets) Many of these programs have their own pages, but an attempt is made here to provide a short overview of a large number… …   Wikipedia

  • Scramjet — Von einem Staustrahltriebwerk angetriebener Flugkörper der NASA. Triebwerkstests in den USA 2002. Ein Staustrahltriebwerk (engl. Ramjet, als Überschallausführung Scramj …   Deutsch Wikipedia

  • Scramjet — Экспериментальный гиперзвуковой летательный аппарат X 43 (рисунок художника). «Гиперзвуковой двигатель» (англ. Supersonic Combustion RAMJET scramjet) вариант Прямоточного Воздушно Реактивного Двигателя («ПВРД»), который отличается от обычного… …   Википедия

  • NASA X-43 — X 43A. Lanzamiento del X 43 desde un B 52B. El NASA …   Wikipedia Español

  • Scramjet — X 43A con un motor scramjet acoplado en la parte inferior. El estatorreactor de combustión supersónica, más conocido por su nombre en inglés scramjet,[1] es una variación de un estatorreactor con la distinción de q …   Wikipedia Español

  • X-43 Scramjet — NASA X 43 Scramjet X 43 Scramjet …   Wikipédia en Français


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.