Longueur algébrique


Longueur algébrique

Mesure algébrique

Page d'aide sur l'homonymie Pour les articles homonymes, voir mesure.

En géométrie élémentaire

En géométrie, une mesure algébrique est une longueur affectée d'un signe, ce qui permet d'en orienter le sens sur un axe donné.

Ainsi, alors que la longueur d'un segment est toujours positive, on peut utiliser une mesure algébrique de ce segment, qui sera égale à sa longueur si on la prend dans un sens, et à l'opposé de sa longueur si on la prend dans l'autre.

La notation qui différencie une mesure algébrique relative à un segment de la longueur de celui-ci consiste à placer une barre horizontale au-dessus des lettres qui représentent les deux points du segment. Alors que l'ordre des lettres n'a pas d'importance dans la notation d'une longueur, il définit justement le signe de la mesure algébrique, puisque la première lettre désigne le point de départ et la seconde désigne le point d'arrivée.

Exemple : pour un segment AB (ou BA, ce qui est équivalent), la mesure algébrique peut être \overline{AB} ou \overline{BA}. Si l'on suppose que l'axe est orienté de A vers B, alors \overline{AB} = AB et \overline{BA} = -AB, et inversement.

En géométrie affine

La notion de mesure algébrique apparaît dans certains énoncés de résultats (théorème de Thalès, théorème de Ceva, théorème de Ménélaüs) qui ne nécessitent nullement que soit définie une unité de « longueur », ni même que l'espace où l'on travaille soit fondé sur le corps des réels.

En premier lieu, étant donnés deux points A et B d'un espace affine, il est possible de définir[1] la mesure algébrique \overline{AB} dès lors qu'on a préalablement privilégié un vecteur \vec u parmi ceux dirigeant la droite (AB) : la notation \overline{AB} désignera simplement l'unique scalaire λ tel que \vec{AB}=\lambda \vec u. Ceci généralise bien la définition « naïve » : si on est sur une droite orientée dans un espace affine euclidien, on retrouve la même quantité que plus haut si on prend pour \vec u le vecteur unitaire orientant (AB) et pointant dans le sens indiqué par l'orientation.

Plus spécifiquement, lorsqu'interviennent des rapports de mesures algébriques, il n'est plus besoin de disposer d'un vecteur de référence. Étant donnés trois points alignés A, B et C d'un espace affine (et rien d'autre), tels que A\not=C, on peut définir[2] la quantité

{\overline{AB}\over\overline{AC}}

comme l'unique scalaire λ tel que \overrightarrow{AB}=\lambda\,\overrightarrow{AC}.

Notes et références

  1. Cette définition est par exemple disponible dans le cours de Mathématiques de L. Lesieur et C. Joulain, Armand Colin, 1966, tome I, p. 223.
  2. Voir par exemple la note 2.4.6 dans le traité de Géométrie de Marcel Berger (tome 1, p. 68 dans l'édition de 1979 - CEDIC Fernand Nathan). Marcel Berger note ce scalaire {\overrightarrow{AB}\over\overrightarrow{AC}}, ce qui souligne que cette notion de « rapport » prend son sens indépendamment de celle de mesure algébrique. On peut d'ailleurs remarquer que la langue allemande donne un nom à ce rapport (« Teilverhältnis ») pour lequel existe une notation spécifique (TV(B,C,A)) - voir par exemple (de) un aide-mémoire de géométrie affine de Bernard Kabelka, disponible en ligne sur le site de l'univsrsité technique de Vienne (consulté le 30 septembre 2007).
  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Mesure alg%C3%A9brique ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Longueur algébrique de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Longueur D'un Arc — Camille Jordan est l auteur de la définition la plus courante de la longueur d un arc. En géométrie, la question de la longueur d un arc est intuitivement simple à concevoir. L idée d arc correspond à celle d une ligne, ou d une trajectoire d un… …   Wikipédia en Français

  • Longueur de la représentation graphique d'une fonction — Longueur d un arc Camille Jordan est l auteur de la définition la plus courante de la longueur d un arc. En géométrie, la question de la longueur d un arc est intuitivement simple à concevoir. L idée d arc correspond à celle d une ligne, ou d une …   Wikipédia en Français

  • Longueur d’un arc — Longueur d un arc Camille Jordan est l auteur de la définition la plus courante de la longueur d un arc. En géométrie, la question de la longueur d un arc est intuitivement simple à concevoir. L idée d arc correspond à celle d une ligne, ou d une …   Wikipédia en Français

  • Longueur D'un Module — La longueur d un module M sur un anneau A est un nombre entier, éventuellement infini, qui généralise d une certaine manière la notion de dimension d un espace vectoriel sur un corps k. Les modules de longueur finie ont beaucoup de particularités …   Wikipédia en Français

  • Longueur d'un arc — Pour une introduction à cette notion, consulter l article : Périmètre. Camille Jordan est l auteur de la définition la plus courante de la longueur d un arc. En géométrie, la question de la longueur d un arc est simple à concevoir… …   Wikipédia en Français

  • Longueur d'un module — La longueur d un module M sur un anneau A est un nombre entier, éventuellement infini, qui généralise d une certaine manière la notion de dimension d un espace vectoriel sur un corps k. Les modules de longueur finie ont beaucoup de particularités …   Wikipédia en Français

  • Longueur focale — Distance focale Cet article fait partie de la série Photographie …   Wikipédia en Français

  • Mesure Algébrique — Pour les articles homonymes, voir mesure. En géométrie élémentaire En géométrie, une mesure algébrique est une longueur affectée d un signe, ce qui permet d en orienter le sens sur un axe donné. Ainsi, alors que la longueur d un segment est… …   Wikipédia en Français

  • Mesure algebrique — Mesure algébrique Pour les articles homonymes, voir mesure. En géométrie élémentaire En géométrie, une mesure algébrique est une longueur affectée d un signe, ce qui permet d en orienter le sens sur un axe donné. Ainsi, alors que la longueur d un …   Wikipédia en Français

  • Mesure algébrique — Pour les articles homonymes, voir mesure. En géométrie élémentaire En géométrie, une mesure algébrique est une longueur affectée d un signe, ce qui permet d en orienter le sens sur un axe donné. Ainsi, alors que la longueur d un segment est… …   Wikipédia en Français