Algèbre unitaire
Page d'aide sur l'homonymie Pour les articles homonymes, voir Algèbre (homonymie).

En mathématiques, une algèbre associative est dite unitaire s'il existe un élément neutre pour la multiplication, c'est-à-dire un élément 1 tel que la propriété 1x = x1 = x soit observée pour tous les éléments x de l'algèbre.

Ceci est équivalent à dire que l'algèbre est un monoïde pour la multiplication. Comme dans tout monoïde, un tel élément neutre est unique.


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Algèbre unitaire de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Algebre de Banach — Algèbre de Banach En mathématiques, l algèbre de Banach est une des structures fondamentales de l analyse fonctionnelle, portant le nom du mathématicien polonais Stefan Banach (1892 1945). Sommaire 1 Définition 1.1 Exemples 2 Propriétés des… …   Wikipédia en Français

  • Algèbre De Banach — En mathématiques, l algèbre de Banach est une des structures fondamentales de l analyse fonctionnelle, portant le nom du mathématicien polonais Stefan Banach (1892 1945). Sommaire 1 Définition 1.1 Exemples 2 Propriétés des algèbres unit …   Wikipédia en Français

  • Algèbre de banach — En mathématiques, l algèbre de Banach est une des structures fondamentales de l analyse fonctionnelle, portant le nom du mathématicien polonais Stefan Banach (1892 1945). Sommaire 1 Définition 1.1 Exemples 2 Propriétés des algèbres unit …   Wikipédia en Français

  • Algebre universelle — Algèbre universelle L algèbre universelle est la branche de l algèbre qui a pour but de traiter de manière générale et simultanée les différentes structures algébriques : groupes, monoïdes, anneaux, espaces vectoriels, etc. Elle permet de… …   Wikipédia en Français

  • Algèbre Universelle — L algèbre universelle est la branche de l algèbre qui a pour but de traiter de manière générale et simultanée les différentes structures algébriques : groupes, monoïdes, anneaux, espaces vectoriels, etc. Elle permet de définir de manière… …   Wikipédia en Français

  • Algebre semi-simple — Algèbre semi simple En mathématiques et plus particulièrement en algèbre, une A algèbre L, où A désigne un anneau, est qualifiée de semi simple ou de complètement réductible si et seulement si la structure d anneau associé à L l est Elle est… …   Wikipédia en Français

  • Algèbre Semi-simple — En mathématiques et plus particulièrement en algèbre, une A algèbre L, où A désigne un anneau, est qualifiée de semi simple ou de complètement réductible si et seulement si la structure d anneau associé à L l est Elle est présente dans de… …   Wikipédia en Français

  • Algèbre semi-simple — En mathématiques et plus particulièrement en algèbre, une A algèbre L, où A désigne un anneau, est qualifiée de semi simple ou de complètement réductible si et seulement si la structure d anneau associé à L l est Elle est présente dans de… …   Wikipédia en Français

  • ALGÈBRE — L’algèbre au sens moderne, à savoir l’étude des structures algébriques indépendamment de leurs réalisations concrètes, ne s’est dégagée que très progressivement au cours du XIXe siècle, en liaison avec le mouvement général d’axiomatisation de… …   Encyclopédie Universelle

  • Algèbre de Banach — Pour les articles homonymes, voir Algèbre (homonymie). En mathématiques, l algèbre de Banach est une des structures fondamentales de l analyse fonctionnelle, portant le nom du mathématicien polonais Stefan Banach (1892 1945). Sommaire 1… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”