Algèbre homologique

Homologie et cohomologie

Page d'aide sur l'homonymie Pour les articles homonymes, voir Homologie.

L'homologie est une technique générale en mathématiques qui sert à mesurer l'obstruction qu'ont certaines suites de morphismes à être exactes. Elle intervient dans de nombreux domaines comme l'algèbre, la topologie algébrique, la géométrie algébrique ou la géométrie différentielle.

Sommaire

Généralités

Complexe de chaines

Un complexe de chaines est la donnée d'une suite de groupes abéliens ou plus généralement d'objets d'une catégorie abélienne Mi et d'une famille d'homomorphismes, appelés opérateurs de bord \partial_i:M_i\rightarrow M_{i-1}, telle que :  \partial_i\partial_{i+1}=0 . Les éléments de Mi s'appellent des chaines de degré i. Les éléments du noyau \ker \partial_i s'appellent des cycles. Les éléments de l'image Im\ \partial_{i+1} s'appellent des bords. Tout bord est un cycle. Les groupes d'homologie du complexe M * sont alors, par définition :  H_i(M_*,\partial_*)= \ker \partial_i / Im\ \partial_{i+1}.

Complexe de cochaines

Un complexe de cochaines est la donnée d'une suite de groupes abéliens ou plus généralement d'objets d'une catégorie abélienne Mi et d'une famille d'homomorphismes, appelés opérateurs de cobord \partial^i:M^i\rightarrow M^{i+1}, telle que :  \partial^i\partial^{i-1}=0 . Les éléments de Mi s'appellent des cochaines de degré i. Les éléments du noyau \ker \partial^i s'appellent des cocycles. Les éléments de l'image Im\ \partial^{i-1} s'appellent des cobords. Tout cobord est un cocycle. Les groupes de cohomologie du complexe M * sont alors, par définition :  H^i(M^*,\partial^*)= \ker \partial^i / Im\ \partial^{i-1}.

On remarque que si M * est un complexe de cochaines, on obtient un complexe de chaines en posant Mi = M i. Cependant les deux terminologies existent car il peut être désagréable de modifier l'indexation.

Par exemple, si (M_*,\partial _*) est un complexe de chaines de groupes abéliens, posons M^i=\mathrm{Hom}(M_i,\mathbf{Z}) et \partial^i=(\partial_i)^* (l'application transposée). Alors (M^*,\partial^*) est un complexe de cochaines.

Exemple

À tout espace topologique, on peut associer son complexe de chaines singulières et donc son homologie singulière. Du point de vue de la théorie des catégories, l'homologie peut être vue comme un foncteur de la catégorie des espaces topologiques vers la catégorie des groupes abéliens gradués.

On peut remplacer les groupes abéliens par des modules sur un anneau commutatif.

Catalogue

Chaque théorie homologique mérite à elle seule un article. La liste suivante n'est pas exhaustive.

Bibliographie

Ouvrages de mathématiques

  • William Fulton ; Algebraic Topology: A First Course, Graduate Texts in Mathematics 153, Springer-Verlag (1995), ISBN 0-387-94327-7.
  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Homologie et cohomologie ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Algèbre homologique de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • homologique — ● homologique adjectif Triangles homologiques, triangles ABC et A′B′C′ vérifiant l hypothèse (AA′) ∩ (BB′) ∩ (CC′) = S. ● homologique (expressions) adjectif Triangles homologiques, triangles ABC et A′B′C′ vérifiant l hypothèse (AA′) ∩ (BB′) ∩… …   Encyclopédie Universelle

  • Algebre universelle — Algèbre universelle L algèbre universelle est la branche de l algèbre qui a pour but de traiter de manière générale et simultanée les différentes structures algébriques : groupes, monoïdes, anneaux, espaces vectoriels, etc. Elle permet de… …   Wikipédia en Français

  • Algèbre Universelle — L algèbre universelle est la branche de l algèbre qui a pour but de traiter de manière générale et simultanée les différentes structures algébriques : groupes, monoïdes, anneaux, espaces vectoriels, etc. Elle permet de définir de manière… …   Wikipédia en Français

  • ALGÈBRE — L’algèbre au sens moderne, à savoir l’étude des structures algébriques indépendamment de leurs réalisations concrètes, ne s’est dégagée que très progressivement au cours du XIXe siècle, en liaison avec le mouvement général d’axiomatisation de… …   Encyclopédie Universelle

  • Algebre — Algèbre L algèbre est la branche des mathématiques qui étudie, d une façon générale, les structures algébriques. L étude des structures algébriques peut être faite de manière unifiée dans la cadre de l algèbre universelle. L étude épistémologique …   Wikipédia en Français

  • Algèbre pure — Algèbre L algèbre est la branche des mathématiques qui étudie, d une façon générale, les structures algébriques. L étude des structures algébriques peut être faite de manière unifiée dans la cadre de l algèbre universelle. L étude épistémologique …   Wikipédia en Français

  • Algébre — Algèbre L algèbre est la branche des mathématiques qui étudie, d une façon générale, les structures algébriques. L étude des structures algébriques peut être faite de manière unifiée dans la cadre de l algèbre universelle. L étude épistémologique …   Wikipédia en Français

  • Algebre lineaire — Algèbre linéaire L’algèbre linéaire est la branche des mathématiques qui s intéresse à l étude des espaces vectoriels (ou espaces linéaires), de leurs éléments les vecteurs, des transformations linéaires et des systèmes d équations linéaires… …   Wikipédia en Français

  • Algebre multilineaire — Algèbre multilinéaire En mathématiques, l’algèbre multilinéaire étend les méthodes de l’algèbre linéaire. Tout comme l’algèbre linéaire est bâtie sur le concept d’un vecteur et développe la théorie des espaces vectoriels, l’algèbre multilinéaire… …   Wikipédia en Français

  • Algèbre Linéaire — L’algèbre linéaire est la branche des mathématiques qui s intéresse à l étude des espaces vectoriels (ou espaces linéaires), de leurs éléments les vecteurs, des transformations linéaires et des systèmes d équations linéaires (théorie des… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”