Algèbre Stellaire

Algèbre stellaire

Une algèbre stellaire ou C*-algèbre est l'objet d'étude de la géométrie non commutative. Cette notion a été formalisée en 1943 par Gelfand et Segal. Les algèbres stellaires sont centrales dans l'étude des représentations unitaires de groupes localement compacts.

Sommaire

Définition

Une algèbre stellaire A est une algèbre de Banach complexe

  • munie d'une involution
 *:A\rightarrow A:x\mapsto x^*
 (x + \lambda y)^* = x^* + \bar\lambda y^*   ;   (xy)^* = y^* x^*  ;  (x^*)^* = x

pour tout x, y dans A, λ un nombre complexe

  • telle que la norme et l'involutions sont liées par
     \|xx^*\|=\|x\|^2
    pour tout x dans A.

Par la seconde condition,  \|xx^*\|=\|x\|^2\leq \|x\| \|x^*\| et donc, par symétrie, on obtient :

  \|x \| = \|x^*\| .


Un *-homomorphisme est un homomorphisme f:A\rightarrow B vérifiant:

f(x * ) = f(x) * .

Cette condition implique que f est une isométrie (et donc en particulier injective et continue). Si f est bijective, son inverse est un *-homomorphisme ; auquel cas, f est appelée *-isomorphisme.

Exemples de C*-algèbres

  • Soit X un espace compact, alors C(X), l'algèbre des fonctions continues sur X à valeurs complexes est une C*-algèbre commutative avec unité.
  • Si X est localement compact, mais non compact, C0(X), l'algèbre des fonctions continues sur X qui tendent vers zéro à l'infini est une C*-algèbre commutative sans unité. (L'existence d'une approximation de l'unité dans C0(X) résulte du théorème de Tietze-Urysohn).
  • Si H désigne un espace de Hilbert, toute sous-algèbre fermée pour la norme d'opérateurs de l'algèbre des opérateurs bornés sur H est une C*-algèbre, a priori non commutative.

Spectre des éléments d'une C*-algèbre

Tout comme pour les opérateurs dans un espace de Hilbert, on peut définir le spectre des éléments d'une C*-algèbre. Le spectre de x est l'ensemble: \scriptstyle{ \sigma (x) = \{ \lambda \in \mathbb{C} ; x - \lambda 1 \mathrm{~n'est~ pas ~inversible}\} }. Cet ensemble suppose que l'algèbre contenant x ait une unité. Cependant, si ce n'est pas le cas, on peut toujours définir le spectre en adjoignant une unité à l'algèbre. (détailler la méthode pour adjoindre l'élément unité ?)

Classification des C*-algèbres commutatives

Si A est une C*-algèbre commutative, la transformée de Gelfand est un isomorphisme entre A et C0(X), où X est le spectre de A (c'est-à-dire l'espace des caractères de A). C'est le théorème de représentation de Gelfand. X est localement compact, et même compact si A a une unité.

Le calcul fonctionnel continu

Si x est un élément normal d'une C*-algèbre A (c’est-à-dire commutant à son adjoint), alors il existe un *-isomorphisme isométrique entre l'algèbre des fonctions continues sur le spectre de x et la sous-C*-algèbre de A engendrée par x et 1. Autrement dit, pour tout f continue sur σ(x), on peut définir f(x) de manière unique, comme un élément de A. Ce calcul fonctionnel prolonge le calcul fonctionnel polynomial, et σ(f(x)) = f(σ(x)) (théorème spectral).

La construction GNS

On doit à Gelfand, Naimark et Segal la construction d'un isomorphisme isométrique (ou représentation fidèle) entre toute C*-algèbre, et une sous-algèbre fermée de l'algèbre des opérateurs sur un certain espace de Hilbert H (que l'on construit en même temps que l'isomorphisme). La théorie des C*algèbre peut donc se ramener à la théorie des opérateurs sur les espaces de Hilbert.

Remarques

Le fait que les C*-algèbres commutatives sont des algèbres de fonctions permet de penser la théorie des C*-algèbre comme une théorie des fonctions non commutatives. Mais comme l'étude des fonctions continues sur un espace compact est équivalente à l'étude de la topologie de cet espace (par théorème de Banach-Stone), on donne plus volontiers à l'étude des C^*-algèbres le nom de topologie non commutative.

Voir aussi

  • Analyse fonctionnelle : L'étude des C*-algèbres, notamment par son aspect spectral, est une branche de l'analyse fonctionnelle.
  • Algèbre des opérateurs : L'étude des C*-algèbre peut se ramener à l'étude des opérateurs sur un hilbert par la construction GNS.
  • K-théorie : Les outils de K-théorie, développés d'abord pour l'étude des fibrés, peuvent être adaptés à l'étude des C*-algèbres. On obtient en quelque sorte une topologie algébrique non commutative.
  • Géométrie non commutative : Ce domaine cherche des analogues aux notions de la géométrie différentielle (connexions, cohomologie ...) dans le cadre non commutatif des algèbres d'opérateurs.
  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Alg%C3%A8bre stellaire ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Algèbre Stellaire de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Algebre stellaire — Algèbre stellaire Une algèbre stellaire ou C* algèbre est l objet d étude de la géométrie non commutative. Cette notion a été formalisée en 1943 par Gelfand et Segal. Les algèbres stellaires sont centrales dans l étude des représentations… …   Wikipédia en Français

  • Algèbre stellaire — Une algèbre stellaire ou C* algèbre est l objet d étude de la géométrie non commutative. Cette notion a été formalisée en 1943 par Gelfand et Segal. Les algèbres stellaires sont centrales dans l étude des représentations unitaires de groupes… …   Wikipédia en Français

  • Algebre de Banach — Algèbre de Banach En mathématiques, l algèbre de Banach est une des structures fondamentales de l analyse fonctionnelle, portant le nom du mathématicien polonais Stefan Banach (1892 1945). Sommaire 1 Définition 1.1 Exemples 2 Propriétés des… …   Wikipédia en Français

  • Algèbre De Banach — En mathématiques, l algèbre de Banach est une des structures fondamentales de l analyse fonctionnelle, portant le nom du mathématicien polonais Stefan Banach (1892 1945). Sommaire 1 Définition 1.1 Exemples 2 Propriétés des algèbres unit …   Wikipédia en Français

  • Algèbre de banach — En mathématiques, l algèbre de Banach est une des structures fondamentales de l analyse fonctionnelle, portant le nom du mathématicien polonais Stefan Banach (1892 1945). Sommaire 1 Définition 1.1 Exemples 2 Propriétés des algèbres unit …   Wikipédia en Français

  • Algèbre (homonymie) — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Le mot « algèbre » vient de l arabe ’al ǧabr (« réduction »), désignant une technique de chirurgie des membres puis une technique de… …   Wikipédia en Français

  • C*-algèbre — Pour les articles homonymes, voir Algèbre (homonymie). En mathématiques, une C* algèbre (complexe) est une algèbre de Banach involutive, c’est à dire un espace vectoriel normé complet sur le corps des complexes, muni d une involution notée * , et …   Wikipédia en Français

  • Adjoint D'un Endomorphisme — Opérateur adjoint En mathématiques l adjoint d un opérateur, quand il existe, est un nouvel opérateur défini sur un espace vectoriel sur le corps des nombres réels ou complexes et munis d un produit scalaire. Un tel espace est qualifié de… …   Wikipédia en Français

  • Adjoint d'un endomorphisme — Opérateur adjoint En mathématiques l adjoint d un opérateur, quand il existe, est un nouvel opérateur défini sur un espace vectoriel sur le corps des nombres réels ou complexes et munis d un produit scalaire. Un tel espace est qualifié de… …   Wikipédia en Français

  • Liste des articles de mathematiques — Projet:Mathématiques/Liste des articles de mathématiques Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou probabilités et statistiques via l un des trois bandeaux suivants  …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”