Algorithme de multiplication

Les techniques de multiplication permettent de calculer le résultat d'une multiplication.

Graphiquement, il s'agit de transformer un rectangle multiplicateur × multiplicande en une ligne, en conservant le nombre d'éléments.

Exemples:

Sommaire

Multiplication basée sur le nombre 2

Ce type de multiplication n'utilise que des additions et des multiplications ou des divisions par 2. Elle ne nécessite pas de connaître de table de multiplication (autre que la multiplication par 2).

Multiplication basée sur la notation décimale

Ce type de multiplication utilise la décomposition décimale des nombres et nécessite de multiplier chaque chiffre du premier nombre par chaque chiffre du second. Elle nécessite de connaître les tables de multiplications d'un chiffre par un autre. Cependant, plusieurs types de disposition ont été adoptés au cours des temps.

Multiplication rapide

Les méthodes décrites dans les pages précédentes nécessitent pour la plupart de multiplier chaque chiffre du multiplicateur par chaque chiffre du multiplicande. Si ces deux nombres ont n chiffres, cela exige n² produits on dit que le calcul est en O(n²).

L'apparition des ordinateurs a permis et exigé la mise au point d'algorithmes plus rapides pour les grands nombres, avec un temps de calcul qui peut descendre à O(n1+ε), où ε est un réel positif arbitraire. La plupart des algorithmes ci-dessous ont été mis au point à partir de 1960.

Autres multiplications

Voir aussi


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Algorithme de multiplication de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Algorithme De Multiplication — Les techniques de multiplication permettent de calculer le résultat d une multiplication. Graphiquement, il s agit de transformer un rectangle multiplicateur × multiplicande en une ligne, en conservant le nombre d éléments. Exemples: Sommaire 1… …   Wikipédia en Français

  • Algorithme De Strassen — L’algorithme de Strassen est un algorithme calculant le produit de deux matrices carrées de taille n. Il est dû à Volker Strassen en 1969.[1] La complexité de l algorithme est en O(n2,807), soit une meilleure complexité que la multiplication… …   Wikipédia en Français

  • Algorithme de strassen — L’algorithme de Strassen est un algorithme calculant le produit de deux matrices carrées de taille n. Il est dû à Volker Strassen en 1969.[1] La complexité de l algorithme est en O(n2,807), soit une meilleure complexité que la multiplication… …   Wikipédia en Français

  • Algorithme de Strassen — L’algorithme de Strassen est un algorithme calculant le produit de deux matrices carrées de taille n. Il est dû à Volker Strassen en 1969[1]. La complexité de l algorithme est en O(n2,807), soit une meilleure complexité que la multiplication… …   Wikipédia en Français

  • Algorithme de Fürer — L algorithme de Fürer est un algorithme de multiplication de très grands entiers. L algorithme a été publié par Martin Fürer de Penn State en 2007[1]. Cet algorithme possède asymptotiquement la plus faible complexité parmi les algorithmes de… …   Wikipédia en Français

  • Algorithme de Schönhage-Strassen — L algorithme de Schönhage Strassen est un algorithme de multiplication de grands entiers par transformée de Fourier rapide publié en 1971 par Arnold Schönhage et Volker Strassen[1]. Dans le modèle de complexité courant des machines de Turing à… …   Wikipédia en Français

  • Algorithme De Karatsuba — L algorithme de Karatsuba (1960) est une méthode permettant de multiplier rapidement deux nombres avec une complexité en au lieu de O(n2) pour la méthode naïve. Note : . Sommaire 1 Énoncé …   Wikipédia en Français

  • Algorithme de karatsuba — L algorithme de Karatsuba (1960) est une méthode permettant de multiplier rapidement deux nombres avec une complexité en au lieu de O(n2) pour la méthode naïve. Note : . Sommaire 1 Énoncé …   Wikipédia en Français

  • Algorithme De Coppersmith-Winograd — L’algorithme de Coppersmith Winograd est un algorithme de calcul du produit de deux matrices carrées de taille n du à Don Coppersmith et Shmuel Winograd en 1987[1]. Sa complexité algorithmique est en ce qui en fait l algorithme le plus efficace… …   Wikipédia en Français

  • Algorithme de Coppersmith–Winograd — Algorithme de Coppersmith Winograd L’algorithme de Coppersmith Winograd est un algorithme de calcul du produit de deux matrices carrées de taille n du à Don Coppersmith et Shmuel Winograd en 1987[1]. Sa complexité algorithmique est en ce qui en… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”