Générateur thermoélectrique à radioisotope

Générateur thermoélectrique à radioisotope

Un générateur thermoélectrique à radioisotope (RTG en anglais, pour Radioisotope Thermoelectric Generator ; en français : GTR) est un générateur électrique nucléaire de conception simple, produisant de l'électricité à partir de la chaleur résultant de la désintégration radioactive de matériaux riches en un ou plusieurs radioisotopes, typiquement du plutonium 238 sous forme de dioxyde de plutonium 238PuO2. Aujourd'hui, la chaleur est convertie en électricité par effet Seebeck à travers des couples thermoélectriques : les générateurs produits au siècle dernier utilisaient typiquement des matériaux silicium-germanium, ceux produits actuellement mettent en œuvre plutôt des jonctions PbTe/TAGS, avec une efficacité énergétique n'atteignant jamais 10 %. Pour améliorer ces performances, les recherches actuelles s'orientent vers des convertisseurs thermoïoniques et des générateurs Stirling à radioisotope, susceptibles de multiplier le rendement global par quatre.

De tels générateurs sont mis en œuvre en astronautique pour l'alimentation électrique des sondes spatiales, et plus généralement pour alimenter en électricité des équipements requérant une source d'énergie stable et fiable capable de fonctionner de façon continue sur plusieurs années sans maintenance directe — typiquement pour des applications militaires, sous-marines, ou en milieu inaccessible ; on avait ainsi conçu des générateurs miniatures pour stimulateurs cardiaques au 238Pu, aujourd'hui remplacés par des technologies plus « vertes » reposant sur des batteries lithium-ion, et de tels générateurs de conception plus simple fonctionnant au strontium 90 ont été utilisés par le passé pour l'éclairage de certains phares isolés sur les côtes de l'URSS.

Schéma du GPHS-RTG des sondes Ulysses, Galileo, Cassini-Huygens et New Horizons.
Photo du générateur à radioisotope de la sonde Cassini.
Rougeoiement d'une pastille de 238PuO2 sous l'effet de sa propre désintégration radioactive.
Vue de l'assemblage de la sonde New Horizons au 4 novembre 2005[1] intégrant un modèle grandeur nature du GTR, remplacé par le vrai générateur peu avant le lancement du 19 janvier 2006.

Sommaire

Source de chaleur

En comparaison d'autres équipements nucléaires, le principe de fonctionnement d'un générateur à radioisotope est simple. Il est composé d'une source de chaleur constituée d'un conteneur blindé rempli de matière radioactive, percé de trous où sont disposés des thermocouples, l'autre extrémité des thermocouples étant reliée à un radiateur. Les calories traversant les thermocouples sont transformées en électricité. Un module thermoélectrique est un dispositif constitué de deux sortes de métaux conducteurs, qui sont connectés en boucle fermée. Si les deux jonctions sont à des températures différentes, un courant électrique est généré dans la boucle.

Le radioisotope retenu doit avoir une demi-vie assez courte, afin de fournir une puissance suffisante. On choisit des demi-vies de l'ordre de quelques dizaines d'années. Il s'agit le plus souvent de plutonium 238, sous forme de dioxyde de plutonium 238PuO2, un puissant émetteur de particules α dont la période radioactive (demi-vie) est de 87,74 ans (32 046 jours). Cet isotope est de loin le plus utilisé parce que, outre sa demi-vie particulièrement bien adaptée, il émet tout son rayonnement sous forme de particules α, plus efficacement converties en chaleur que les particules β- et a fortiori que les rayons γ.

Le premier radioisotope utilisé a été le polonium 210 en raison de sa période plus courte (seulement 138,38 jours) et donc de sa très grande puissance de rayonnement, tandis que l'américium 241 offre une alternative moins puissante mais cinq fois plus pérenne en raison de sa période de 432,2 années (environ 157 850 jours) :

Décroissance calculée de trois radioisotopes pour GTR
Radioisotope 241Am 238Pu 210Po
Période radioactive 432,2 ans 87,74 ans 138,38 jours
Puissance spécifique 106 W/kg 567 W/kg 140 000 W/kg
Matériau radioactif 241AmO2 PuO2 à 75 % de 238Pu Po à 95 % de 210Po
Puissance initiale 97,0 W/kg         390,0 W/kg         133 000 W/kg      
Après 1 mois 97,0 W/kg         389,7 W/kg         114 190 W/kg      
Après 2 mois 97,0 W/kg         389,5 W/kg         98 050 W/kg      
Après 6 mois 96,9 W/kg         388,5 W/kg         53 280 W/kg      
Après 1 an 96,8 W/kg         386,9 W/kg         21 340 W/kg      
Après 2 ans 96,7 W/kg         383,9 W/kg         3 430 W/kg      
Après 5 ans 96,2 W/kg         374,9 W/kg         14 W/kg      
Après 10 ans 95,5 W/kg         360,4 W/kg         0 W/kg      
Après 20 ans 93,2 W/kg         333,0 W/kg         0 W/kg      
Après 50 ans 89,5 W/kg         262,7 W/kg         0 W/kg      

Les isotopes 242Cm et 244Cm ont également été proposés sous forme Cm2O3 en raison de leurs propriétés particulières :

Avec une puissance spécifique respectivement de 98 kW/kg pour le 242Cm2O3 et de 2,27 kW/kg pour le 244Cm2O3, ces céramiques présentent néanmoins l'inconvénient d'émettre un flux important de neutrons en raison d'un taux de fission spontanée respectivement de 6,2×10-6 et 1,4×10-6 par désintégration α, ce qui nécessite un blindage plusieurs dizaines de fois plus lourd qu'avec le 238PuO2.

Conversion en électricité

Les éléments thermoélectriques actuellement utilisés pour convertir en électricité le gradient de température généré par la désintégration des radioisotopes sont particulièrement peu efficaces : entre 3 et 7 % seulement, n'atteignant jamais 10 %. Dans le domaine astronautique, ces « thermocouples » ont longtemps été réalisés en matériaux silicium-germanium, notamment dans les GPHS-RTG des sondes Ulysses, Galileo, Cassini-Huygens et New Horizons. La nouvelle génération, introduite par le MMRTG pour la mission Mars Science Laboratory, fonctionne avec une jonction dite PbTe/TAGS, c'est-à-dire tellurure de plomb PbTe / tellurures d'antimoine Sb2Te3, de germanium GeTe et d'argent Ag2Te.

Des technologies plus novatrices reposant sur les convertisseurs thermoïoniques permettraient d'atteindre une efficacité énergétique comprise entre 10 et 20 %, tandis que des expériences recourant à des cellules thermophotovoltaïques, disposées à l'extérieur du générateur à radioisotope classique équipé d'éléments thermoélectriques, pourraient théoriquement permettre d'atteindre des rendements proches de 30 %.

Les générateurs Stirling à radioisotope (GSR, ou SRG en anglais), utilisant un moteur Stirling pour générer le courant électrique, permettraient d'atteindre une efficacité de 23 %, voire davantage en amplifiant le gradient thermique. Le principal inconvénient de ce dispositif est cependant d'avoir des pièces mécaniques en mouvement, ce qui implique de devoir gérer l'usure et les vibrations de ce système. Dans la mesure où cette technologie permettrait néanmoins de multiplier par quatre le rendement des GTR actuels, elle fait actuellement l'objet de recherches significatives menées conjointement par le DOE et la NASA en vue de développer un générateur Stirling à radioisotope avancé (ASRG) qui pourrait être utilisé par la sonde TiME (proposée pour amerrir sur Titan en 2022), actuellement en phase d'évaluation par la NASA pour la mission TSSM dans le cadre de son programme Discovery.

Utilisation

La puissance reçue du soleil décroît rapidement — selon une loi en 1/r2 — à mesure qu'on s'éloigne du centre du système solaire[2], ce qui rend très insuffisants les panneaux solaires sur les sondes spatiales destinées à explorer les planètes lointaines : ces sondes sont donc équipées de générateurs à radioisotope afin de prendre le relais des panneaux solaires au-delà de l'orbite de Mars, comme par exemple les sondes Pioneer 10, Pioneer 11, Voyager 1, Voyager 2, Galileo, Ulysses, Cassini, ou encore New Horizons. Ces générateurs permettent également aux robots déposés en surface des planètes de fonctionner la nuit, lorsque les panneaux solaires sont dans l'obscurité : les six Apollo Lunar Surface Experiments Packages déposés sur la Lune utilisaient des GTR, tout comme les deux sondes martiennes Viking 1 et 2.

Un générateur thermoélectrique à radioisotope est particulièrement bien adapté à la production d'une alimentation électrique stable, sur une longue durée, et pour maintenir opérationnels pendant plusieurs années les instruments embarqués dans les sondes interplanétaires. Ainsi, le générateur embarqué sur la sonde New Horizons est capable de fournir une alimentation électrique stable de 200 W sur plus de 50 ans. Au bout de deux siècles, la puissance tombe à 100 W. Cependant, en raison du plutonium 238 présent dans un GTR spatial, tout échec au décollage des lanceurs utilisés pour propulser la sonde présente un risque environnemental.

Les générateurs à isotope ont été principalement conçus pour l'exploration spatiale, mais l'Union soviétique les a utilisés pour alimenter des phares isolés à l'aide de générateurs au strontium 90. Ce dernier est sensiblement moins cher que les autres radioisotopes traditionnels, mais émet presque exclusivement des radiations β, à l'origine d'un fort rayonnement X par Bremsstrahlung. Cela ne posait pas de problème majeur compte tenu du fait que ces installations étaient destinées aux endroits isolés et peu accessibles, où elles fournissaient une source d'énergie très fiable, mais présentait tout de même des risques potentiels en cas d'incident ou de dégradation de ces matériels sans surveillance rapprochée. Du millier de générateurs de ce type, utilisant du fluorure de strontium SrF2, voire de titanate de strontium SrTiO3, plus aucun n'est aujourd'hui en état de fonctionner à une puissance acceptable suite à l'épuisement du radioisotope.

Le strontium 90 a une période radioactive de 28,8 ans (ce qui signifie que la moitié du 90Sr subsiste après 28,8 ans, le quart après 57,6 ans, etc.), en se désintégrant par désintégration β pour donner de l'yttrium 90, qui se désintègre à son tour par émission β- avec une demie-vie de 64 heures pour finalement donner du zirconium 90 qui, lui, est stable.

Sécurité

Les générateurs à isotope ne fonctionnent pas comme les centrales nucléaires.

Les centrales nucléaires créent l'énergie à partir d'une réaction en chaîne dans laquelle la fission nucléaire d'un atome libère des neutrons, qui à leur tour entraînent la fission d'autres atomes. Cette réaction, si elle n'est pas contrôlée, peut rapidement croître de façon exponentielle et causer de graves accidents, notamment par la fonte du réacteur.

À l'intérieur d'un générateur à isotope, on utilise seulement le rayonnement naturel du matériau radioactif, c'est-à-dire sans réaction en chaîne, ce qui exclut a priori tout scénario catastrophe. Le carburant est de fait consommé de façon lente, cela produit moins d'énergie mais cette production se fait sur une longue période.

Même si le risque de catastrophe majeure est quasi nul, on n'est cependant pas à l'abri d'une contamination radioactive et chimique car tous les isotopes de plutonium et des autres transuraniens sont aussi chimiquement toxiques : si le lancement d'une sonde spatiale échoue à basse altitude, il y a un risque de contamination localisée, tout comme dans la haute atmosphère, une désintégration de la sonde pourrait engendrer une dissémination de particules radioactives. On dénombre plusieurs accidents de ce type, dont trois (le satellite américain Transit 5BN-3 et 2 sondes russes dont la mission Cosmos 305) ayant conduit à la libération de particules radioactives dans l'atmosphère. Dans les autres cas, aucune contamination n'a pu être détectée, et certains générateurs à isotopes ont été récupérés intacts, ayant résisté à la retombée dans l'atmosphère[3].

Notes et références

  1. (en) NASA Kennedy Space Center Multimedia Gallery – 4 novembre 2005 « PHOTO NO: KSC-05PD-2411. »
  2. Elle est de l'ordre de 1 300 à 1 400 W/m2 au niveau de la Terre, mais n'est plus que de 500 à 700 W/m2 au niveau de l'orbie de Mars et tombe entre 45 et 55 W/m2 au niveau de Jupiter.
  3. General Safety Considerations, Fusion Technology Institute, University of Wisconsin-Madison, Spring 2000

Voir aussi

Articles connexes

Liens externes


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Générateur thermoélectrique à radioisotope de Wikipédia en français (auteurs)

Игры ⚽ Нужно решить контрольную?

Regardez d'autres dictionnaires:

  • Generateur thermoelectrique a radioisotope — Générateur thermoélectrique à radioisotope Un générateur thermoélectrique à radioisotope, (en anglais RTG : Radioisotope thermoelectric generator) est un générateur électrique de conception simple, produisant de l énergie électrique par la… …   Wikipédia en Français

  • Générateur Thermoélectrique À Radioisotope — Un générateur thermoélectrique à radioisotope, (en anglais RTG : Radioisotope thermoelectric generator) est un générateur électrique de conception simple, produisant de l énergie électrique par la chaleur émise par désintégration radioactive …   Wikipédia en Français

  • Générateur thermoélectrique à radioisotope multi-mission — (en) Mars Science Laboratory et son MMRTG au cœur du dispositif noir visible à droite de l image, à l arrière de l astromobile. Un générateur thermoélectrique à radioisotope multi mission (MMRTG en anglais, pour …   Wikipédia en Français

  • Thermoélectrique — Thermoélectricité Découvert puis compris au cours du XIXe siècle grâce aux travaux de Seebeck, Peltier ou encore Lord Kelvin, l effet thermoélectrique est un phénomène physique présent dans certains matériaux : il y lie le flux de… …   Wikipédia en Français

  • Générateur électrique — Pour les articles homonymes, voir Générateur. Un générateur General Electric Un générateur électrique est un dispositif permett …   Wikipédia en Français

  • Effet thermoélectrique — Thermoélectricité Découvert puis compris au cours du XIXe siècle grâce aux travaux de Seebeck, Peltier ou encore Lord Kelvin, l effet thermoélectrique est un phénomène physique présent dans certains matériaux : il y lie le flux de… …   Wikipédia en Français

  • New Horizons — Pour les articles homonymes, voir Horizon. New Horizons …   Wikipédia en Français

  • Fièvre des radiations — Syndrome d irradiation aiguë Le syndrome d irradiation aiguë (ou, anciennement, maladie des rayons) désigne un ensemble de symptômes potentiellement mortels qui résultent d une exposition ponctuelle des tissus biologiques d une partie importante… …   Wikipédia en Français

  • Mal des rayons — Syndrome d irradiation aiguë Le syndrome d irradiation aiguë (ou, anciennement, maladie des rayons) désigne un ensemble de symptômes potentiellement mortels qui résultent d une exposition ponctuelle des tissus biologiques d une partie importante… …   Wikipédia en Français

  • Maladie des rayons — Syndrome d irradiation aiguë Le syndrome d irradiation aiguë (ou, anciennement, maladie des rayons) désigne un ensemble de symptômes potentiellement mortels qui résultent d une exposition ponctuelle des tissus biologiques d une partie importante… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”