Addition des matrices

Addition matricielle

L'addition des matrices est définie pour deux matrices de même type. La somme de deux matrices de type (m, n), A = (aij) et B = (bij), notée A + B, est à nouveau une matrice (cij) de type (m, n) obtenue en additionnant les éléments correspondants, i.e.,

pour tous i, j, c_{ij}=a_{ij}+b_{ij}~

Par exemple:


  \begin{pmatrix}
    1 & 3 \\
    1 & 0 \\
    1 & 2
  \end{pmatrix}
+
  \begin{pmatrix}
    0 & 0 \\
    7 & 5 \\
    2 & 1
  \end{pmatrix}
=
  \begin{pmatrix}
    1+0 & 3+0 \\
    1+7 & 0+5 \\
    1+2 & 2+1
  \end{pmatrix}
=
  \begin{pmatrix}
    1 & 3 \\
    8 & 5 \\
    3 & 3
  \end{pmatrix}

L'ensemble des matrices de type (m, n) avec la loi d'addition forment un groupe abélien.

Cette notion d'addition des matrices provient de celle des applications linéaires; si A et B sont interprétées comme des matrices d'applications linéaires relativement à des bases données, alors la matrice somme A+B représente la matrice de la somme des deux applications linéaires par rapport à ces mêmes bases.


Pour toutes matrices quelconques A (de taille m × n) et B (de taille p × q), il existe la somme directe de A et B, notée A \oplus B et définie par :


  A \oplus B =
  \begin{pmatrix}
     a_{11} & \cdots & a_{1n} &      0 & \cdots &      0 \\
     \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
    a_{m 1} & \cdots & a_{mn} &      0 & \cdots &      0 \\
          0 & \cdots &      0 & b_{11} & \cdots &  b_{1q} \\
     \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
          0 & \cdots &      0 & b_{p1} & \cdots &  b_{pq} 
  \end{pmatrix}

Par exemple :


  \begin{pmatrix}
    1 & 3 & 2 \\
    2 & 3 & 1
  \end{pmatrix}
\oplus
  \begin{pmatrix}
    1 & 6 \\
    0 & 1
  \end{pmatrix}
=
  \begin{pmatrix}
    1 & 3 & 2 & 0 & 0 \\
    2 & 3 & 1 & 0 & 0 \\
    0 & 0 & 0 & 1 & 6 \\
    0 & 0 & 0 & 0 & 1
  \end{pmatrix}

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Addition matricielle ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Addition des matrices de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Multiplication des matrices — Produit matriciel Le produit matriciel désigne le produit de matrices, initialement appelé la « composition des tableaux »[1]. Cet article montre comment multiplier les matrices. Sommaire 1 Produit matriciel ordinaire 1.1 Exemple …   Wikipédia en Français

  • Addition Matricielle — L addition des matrices est définie pour deux matrices de même type. La somme de deux matrices de type (m, n), A = (aij) et B = (bij), notée A + B, est à nouveau une matrice (cij) de type (m, n) obtenue en additionnant les éléments correspondants …   Wikipédia en Français

  • addition — [ adisjɔ̃ ] n. f. • 1265; lat. additio « chose ajoutée » 1 ♦ Action d ajouter en incorporant. ⇒ adjonction. L addition de plusieurs choses. Liqueur composée par addition d un sirop à une eau de vie. Chim. Composé d addition, formé par l union de… …   Encyclopédie Universelle

  • Addition matricielle — L addition des matrices est définie pour deux matrices de même type. La somme de deux matrices de type (m, n), A = (aij) et B = (bij), notée A + B, est à nouveau une matrice (cij) de type (m, n) obtenue en additionnant les éléments correspondants …   Wikipédia en Français

  • MATRICES (TRAITEMENT NUMÉRIQUE DES) — Nous désignons par A une matrice à n lignes et p colonnes. L’élément de la i ième ligne et de la j ième colonne de A est un nombre complexe noté a i , j . Les problèmes de calcul numérique les plus courants liés aux matrices sont la résolution de …   Encyclopédie Universelle

  • Addition vectorielle — Addition Pour les articles homonymes, voir Addition (homonymie). Une addition très simple …   Wikipédia en Français

  • Matrices de rotation — Matrice de rotation En mathématiques, et plus précisément en algèbre linéaire, une matrice de rotation est une matrice orthogonale de déterminant 1. Le nom est dû au fait qu une matrice de rotation n×n correspond à une rotation géométrique autour …   Wikipédia en Français

  • Addition — Pour les articles homonymes, voir Addition (homonymie). Une addition très simple. L addition[1] …   Wikipédia en Français

  • Catégorie des groupes — Groupe (mathématiques) Pour les articles homonymes, voir Groupe.  Cet article concerne une introduction au concept de groupe. Pour un approfondissement, voir théorie des groupes …   Wikipédia en Français

  • Théorie des Groupes — Groupe (mathématiques) Pour les articles homonymes, voir Groupe.  Cet article concerne une introduction au concept de groupe. Pour un approfondissement, voir théorie des groupes …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”