Trempe


Trempe

La trempe ou trempage est un traitement thermique consistant en un refroidissement rapide d'un matériau pour obtenir des propriétés mécaniques particulières. On applique ce traitement majoritairement à des métaux mais des verres sont obtenus par ce type de traitement. Le langage courant associe fréquemment trempe et durcissement, mais cela n'est pas le cas général ; par exemple, les alliages d'aluminium s'adoucissent à la trempe.

Cette opération consiste à plonger un matériau chaud dans un fluide plus froid afin de le doter de propriétés nouvelles. Elle est réalisée immédiatement après l'opération dite de mise en solution.

La trempe étagée est une trempe de thermoflexible à nitruration résiduelle. Elle a un refroidissement intérieur et extérieur identique.

On parle aussi de trempe pour qualifier le processus de solidification brutale d'un magma en une roche, par exemple par exhumation rapide dans l'eau de mer ou éruption volcanique. Les roches obtenues par trempe sont des roches volcaniques partiellement cristallisées, avec des textures typiques.

Sommaire

Principe de la trempe des métaux

La trempe est un refroidissement brutal de la pièce qui a pour objectif de figer la structure obtenue lors de la mise en solution. Dans certains cas, comme l'acier, ce refroidissement s'accompagne d'une transformation allotropique.

La séquence de traitement est la suivante :

  • la mise en solution :
    • chauffage de la pièce jusqu'à une température suffisante (pour les aciers la température dite d'austénisation > 900 °C),
    • maintien en température pour homogénéisation et mise en solution solide des éléments d'alliage,
  • la trempe : refroidissement rapide dans le fluide de refroidissement.

Fréquemment par extension de langage, la séquence « mise en solution + trempe » est appelée « trempe ».

Les fluides utilisés par ordre de vitesse de refroidissement (de la plus élevée à la plus faible) sont :

  • l'eau salée
  • l'eau,
  • l'eau additivée (polymère par exemple),
  • l'huile,
  • le brouillard d'eau,
  • les gaz (air, argon, azote, etc.).

La vitesse de refroidissement est conditionnée par trois facteurs :

  • le transfert de chaleur dans le fluide de trempe ;
  • le transfert de chaleur à l'interface métal-fluide de trempe ;
  • le transfert de chaleur dans le métal.

La trempe peut être suivie d'un revenu, qui est un réchauffement de la pièce. Elle permet d'obtenir les caractéristiques mécaniques définitives de la pièce soit en les augmentant (cas des alliages sans transformation allotropique), soit en les diminuant et d'obtenir un alliage moins fragile (cas des alliages avec transformation allotropique). Certains aciers fortement alliés nécessitent deux voire minimum trois revenus.

Trempe avec transformation allotropique

Le mécanisme de la trempe est lié aux changements de formes cristallines d'un métal en fonction de la température (les variétés allotropiques). Un métal est une forme cristalline au sein de laquelle des atomes peuvent venir se loger (composé interstitiel). La solubilité de ces atomes dans la maille dépend de la structure de celle-ci et de sa taille. Une variation brusque de température d'un cristal dans lequel est dissout une grande quantité d'un composant passant d'une maille munie de sites importants vers une maille plus serrée emprisonne ces atomes dans le nouveau cristal et crée une contrainte dans celle-ci.

Cas de l'acier

Transformations allotropiques du fer pur
Trempe d'un acier C45 (acier non allié à 0 45 % de carbone : mise en parallèle du diagramme fer-carbone (gauche) et des diagrammes de transformation (linéaires)

À basse température, l'acier est biphasé à l'état stable : il est composé de cristaux de fer avec du carbone en solution solide (structure ferritique ou α), et de cristaux de carbures de fer Fe3C. L'acier présente une transformation allotropique : il est cubique centré à basse température (ferrite α), et cubique à faces centrées à haute température (structure austénitique ou γ). Cette température de transformation dépend de la teneur en carbone ; ceci est représente par la ligne A3 du diagramme binaire fer-carbone. La trempe des aciers comporte donc un chauffage jusqu’au-delà de la température d’austénitisation, un maintien à cette température pendant un temps déterminé et un refroidissement à une vitesse déterminée.

Dans le domaine austénitique, le fer a une structure cubique à faces centrées (fer γ) qui possède des sites interstitiels plus grands que dans la structure cubique centrée (fer α), ce qui permet au carbone de se dissoudre beaucoup mieux dans le fer γ que dans le fer α. Les carbures Fe3C (cémentite et perlite) formés lors du refroidissement sont donc dissouts. Si on le soumet maintenant à un refroidissement lent et en équilibre, il y aura précipitation de carbures et on retournera à l’état initial avant l’austénitisation, chose qui ne nous intéresse pas car on n’aura pas obtenu le durcissement souhaité. Par contre, si le refroidissement se produit à une vitesse assez rapide (gouvernée par différentes variables qu’on abordera plus tard), les atomes de carbone n'ont pas le temps de diffuser, la précipitation est empêchée ; en conséquence, lorsque les atomes de fer reprennent leur configuration α, la matrice de fer est contrainte par les atomes de carbone. De cette façon, on obtient le durcissement.

Ce traitement de trempe transforme l’austénite en martensite, qui présente une dureté proportionnelle à la teneur en carbone. De même, en fonction de la teneur en carbone du matériau et de la vitesse de reforidissement, d'autres phases peuvent apparaître, comme la bainite.

Les paramètres principaux d'une trempe sont le taux de composants étrangers dissous dans le cristal, la vitesse de traversée de la zone de changement de variété allotropique ainsi que les proportions de certains additifs. Cette vitesse va déterminer quelle proportion de composant intrus va avoir le temps de migrer à l'extérieur du cristal sous l'effet des contraintes.

Pour les aciers, la zone de températures de 600 à 800 °C doit être franchie sans arrêt sinon une forme spécifique du métal pourrait se former. Si le passage de la zone de recristallisation est trop lent, celle-ci suit à l'intérieur de chaque grain des lignes de potentiels énergétiques correspondant à des plans dont la géométrie est liée aux plans de compacité maximale du cristal, créant des particularités non anisotropes et rendant la pièce fragile (structure de Widmanstätten).

Dans le cas de certains aciers, si la vitesse de trempe est très élevée (hypertrempe), on parvient à conserver la structure austénitique à température ambiante (austénite métastable). C'est le cas en particulier les aciers inoxydables de type X2CrNi8-10 (304L), X5CrNi8-10 (304), X2CrNiMo17-12-2 (316L) et X5CrNiMo17-12-2 (316).

Dans ce procédé intervient également la mise en solution de précipités d'éléments d'alliage qui ont, de manière générale, des dimensions trop importantes pour obtenir finalement un durcissement optimal. C’est ici que le procédé d’austénitisation joue son rôle principal. Cette température doit être choisie de manière à assurer une bonne répartition des éléments d'alliage, ce qui assure un durcissement homogène. C'est pour cela qu'il est important, lors de la conception de pièces destinées à être trempées, de veiller à avoir une forme homogène de la pièce, afin d'éviter des concentrations de matière en certaines parties, qui peuvent poser problème lors du traitement thermique.

En même temps, ce durcissement provoque aussi des effets indésirables comme par exemple une augmentation de la fragilité du matériau (diminution de la résilience). C’est pour cette raison qu'après la trempe martensitique, on effectue toujours un revenu (au minimum un revenu de détente aux environs de 200 °C). Après une trempe bainitique (ou trempe isotherme), le revenu est inutile.

De nombreuses variables influencent la qualité et les propriétés mécaniques de l’acier trempé et elles sont toutes importantes à maîtriser :

  • la température de trempe ;
  • le temps de trempe ;
  • le taux de refroidissement (cooling rate) ;
  • la composition chimique du matériau ;

De plus, au cours de la trempe il apparaît certains problèmes qu’on doit éviter ou contrôler selon la qualité du produit final à obtenir. Au cours du chauffage, la température n’est pas homogène dans la pièce (plus chaude sur la peau et plus froide au cœur). Ce gradient de température provoque des contraintes internes qui peuvent entraîner des déformations élastiques voire plastiques.

Pendant le refroidissement il existe aussi un gradient de température, mais de sens contraire. La transformation allotropique dont nous avons parlé ci-dessus (fer γ → fer α) implique aussi une déformation. À ce moment on assiste à une contraction volumique importante. On doit prêter beaucoup d’attention à ce point parce que comme la déformation est importante, elle peut provoquer des fissures en surface de la pièce. La résistance à la compression n’est pas la même qu’à la traction et le risque de fissuration est donc différent. C’est pour cette raison que le risque est présent particulièrement pendant le chauffage (il engendre des efforts de traction à la surface), mais on doit aussi contrôler le refroidissement (il engendre des contractions à la surface). C’est le liquide de trempe (entre autres) qui détermine la vitesse de refroidissement.

Un autre type de problèmes possibles lors de la réalisation d’une trempe sont les réactions avec l’atmosphère. Si on met l’acier en contact avec l’air, il peut y avoir décarburation et formation de calamine. L’acier peut être exposé à ces conditions non seulement pendant le chauffage mais aussi pendant le refroidissement (l’air libre est aussi un milieu de trempe). En connaissant les avantages et inconvénients de la trempe à l’air, on peut décider s’il vaut mieux choisir un liquide de trempe qui ne présente pas ces effets et en assumer les coûts. Voici quelques arguments qui justifient l’importance que les liquides de trempe ont dans les procédés de refroidissement. Pour éviter les problèmes de décarburation il est possible de traiter certains aciers alliés dans des fours sous vide.

Trempe sans transformation allotropique

Cas des alliages d'aluminium

Objectif et principes

Cycle de traitement thermique des alliages d'aluminium en vue d'obtenir une augmentation des caractéristiques mécaniques par durcissement structural.

Pour les alliages d'aluminium, la trempe a pour effet de diminuer la dureté au lieu de l'augmenter. Après trempe, par phénomène de maturation, les caractéristiques mécaniques augmentent naturellement à la température ambiante. Certains alliages peuvent atteindre leurs caractéristiques mécaniques d'usages. Ce phénomène est utilisé lors de la pose des rivets.

Le but de la trempe dans le cas des alliages d'aluminium est de maintenir à la température ambiante une solution solide sursaturée en éléments d'addition. Cette solution solide est obtenue en effectuant une mise en solution des éléments constituant les précipités présents à la température ambiante. Après la trempe on obtient une solution solide sursaturée en éléments d'additions. À la température ambiante, cette solution est métastable. La trempe fige cet état de dissolution et également capture les lacunes créées par l'effet de la température. Les éléments d'additions ainsi que les lacunes sont positionnés de manière aléatoire en substitution des atomes d'aluminium aux nœuds du réseau cristallin de la matrice aluminium (cubique à faces centrées). Il n'y a pas de transformation allotropique. Une pièce en alliage d'aluminium brut de trempe (immédiatement après la trempe) a de très faibles caractéristiques mécaniques.

La trempe des alliages d'aluminium est effectuée sur les alliages dit à durcissement structural :

La trempe est un élément de la séquence de traitement :

  • mise en solution,
  • trempe,
  • maturation (à température ambiante) ou revenu.

Dans la nomenclature des états métallurgiques des produits corroyés en alliage d'aluminium (norme EN 515), l'état mise en solution, brut de trempe est appelé W : mise en solution trempé.

Le cycle de traitement thermique est différent selon le typer d'alliage :

  • cas des alliages au silicium (AS) : la température de mise en solution de l'ordre de 540 °C, durée 5 à 12h, suivant l'alliage et la masse de la pièce ; la trempe se fait à l'eau et est suivie d'un revenu (170 °C environ) pendant 3 à 10 h ;
  • cas des alliages au cuivre (AU) : la mise en solution à une température légèrement inférieure et la trempe, toujours à l'eau, est suivie d'une maturation de plusieurs jours à température ambiante.

Dans tous les cas, les cycles précis sont donnés par des normes ou des spécifications particulières, en fonction de l'alliage.

Extrait du diagramme de phase aluminium-cuivre : Pour un alliage à 3,5 % de cuivre, la température de mise en solution doit être supérieure à Tm afin de dissoudre totalement le cuivre dans la phase α. Pour éviter la brûlure, cette température doit être inférieure à Tb. Cette représentation est théorique, un alliage n'étant jamais purement binaire, il faut également tenir compte des autres éléments d'alliage. C'est seulement quand on a la dissolution complète des éléments d'addition que l'on effectue la trempe.

Si l'on prend l'exemple de l'alliage 2017 le but du traitement de mise en solution sera de dissoudre les 3,5% de cuivre contenu dans l'alliage.
Il faut donc amener le métal à une température supérieure à la température du solvus correspondant au diagramme de phase aluminium-cuivre (Tm sur le graphique).
Le température typiques de trempe est située entre 440 et 500°C.
Il faut veiller à ne pas utiliser une température trop élevée pour ne pas « brûler » le métal (fusion partielle).
En cas de brûlure, la pièce devient impropre à l'utilisation par perte de caractéristiques mécaniques et ne peut pas être retouchée.

Le temps de maintien à cette température doit être suffisant pour obtenir cet état de solution.
La durée est dépendante des dimensions de la pièce mais également de l'alliage :
1 minute pour une tôle en 6061, 30 minute pour une tôle en 2024 (épaisseur : 1 mm).
Des durées de mise en solution plus importantes sont nécessaires pour les pièces de fonderie (5 heures mini pour des pièces en 21000, 8 à 12 heures pour des pièces en 42200).

La vitesse de refroidissement peut provoquer la formation de contraintes internes. On observe souvent une déformation des pièces lors de la trempe. Ce qui oblige à intercaler une opération appelée le redressage entre la trempe et le revenu (ou juste après la trempe dans le cas de certains AU). Cette opération, qui est réalisée sur un marbre en fonte, à l'aide de maillets, marteaux, masses ou même des presses pour les grandes pièces. Pour obtenir la bonne géométrie, l'opérateur utilise souvent un calibre de redressage ou des règles, équerres, vés, etc. Cette opération doit être effectuée le plus rapidement possible car au bout de quelques heures, il y a risque de casse de la pièce à cause de la l'augmentation de la dureté provoqué par la maturation de l'alliage.

À titre d'exemple, sur un alliage EN AC-42200 SF [AlSi7Mg0,6] (ancienne dénomination française A-S7G0,6, contenant environ 7 % de silicium et 0,6 % de magnésium) :

  • une pièce de fonderie non traitée aura pour caractéristiques mécaniques (environ)
    Rm210 MPa, Rp0,2160 MPa, A ≃ 1 % pour une dureté de l'ordre de 80 HB  ;
  • alors que le même alliage trempé-revenu (EN AC-42200 ST6) donnera des résultats de l'ordre de
    Rm280 MPa, Rp0,2250 MPa, A ≃ 2 % pour une dureté supérieure à 95 HB.

Ces résultats sont des valeurs couramment observées et non des valeurs imposées par les normes.

Quelques procédés de transformations (filage, laminage) permettent sous certaines conditions de réaliser la trempe immédiatement après la transformation.
C'est la trempe sur presse : La température obtenue par le préchauffage du métal et lors de la transformation est suffisante pour effectuer la mise en solution de la pièce.
La pièce est trempée immédiatement à la sortie de la presse ou du laminoir sans phase de chauffage. Un cas analogue se présente en fonderie, principalement avec les alliages de la série 71000, c'est la « trempe au démoulage ».

Vitesse critique de trempe

Le résultat est obtenu uniquement si la vitesse de trempe (vitesse de refroidissement du métal) est supérieure à la vitesse critique de trempe. Dans le cas contraire, si la vitesse est insuffisante, on obtient la formation de précipités grossiers de taille et de forme ne permettant pas d'obtenir les caractéristiques mécaniques recherchées.

Cette vitesse critique de trempe est fonction de l'alliage (exemple : 18°C/s pour le 2017 et 100°C/s pour le 7075). Pour obtenir le bon résultat, il faut que la vitesse de trempe soit supérieure à la vitesse critique en tous points du volume de la pièce trempée. Pour des pièces massives, la vitesse variera fortement entre le cœur de la pièce et sa périphérie. Ainsi dans certains cas, les caractéristiques mécaniques seront plus faibles dans la partie centrale de la pièce à l'issue du traitement thermique.

D'un point de vue pratique, il faut veiller à ce que le temps de transfert entre le four et le bac de trempe soit suffisamment court pour que la pièce n'atteigne pas une température trop faible avant d'être refroidie par le fluide de trempe. La vitesse de refroidissement à l'air étant faible et dans la majorité des cas supérieure à la vitesse critique. Ce point est particulièrement vrai dans le cas de pièces minces.

Fluide de trempe

La trempe s'effectue par immersion dans l'eau, par pulvérisation d'eau ou par soufflage d'air.

Le fluide le plus utilisé est l'eau froide (T<40°C). Dans certain cas, l'eau froide génère un refroidissement trop rapide (exemple : pièces de formes compliquées) et génère des contraintes internes préjudiciables à l'utilisation de la pièce (déformations, risque de corrosion sous contrainte ou même rupture de la pièce si les contraintes sont trop élevées). Dans ce cas, on peut utiliser de l'eau chaude (T>50°C) ou de l'huile. Dans certains cas assez rares, il est possible d'utiliser d'autres fluides comme des liquides à base de glycol pour minimiser la formation des contraintes internes. Il est possible également de relaxer les contraintes en effectuant un travail à froid immédiatement après la trempe (sur trempe fraiche). On peut ainsi étirer la pièce ou la comprimer.

Pour éviter la formation d'un film de vapeur d'eau autour de la pièce (phénomène de caléfaction) on peut revêtir la pièce d'un revêtement. Cette opération s'appelle le potéyage.

Notes et références

Annexes

Articles connexes

Liens externes

Bibliographie

  • Guy Murri, Aide mémoire métallurgie, métaux, alliage, propriétés, Dunod, Paris 2004, 330 pages (ISBN 2-10-007599-3)
  • Norme EN 515 : «Aluminium et alliages d'aluminium – Produits corroyés – Désignation des états métallurgiques», publié par le Comité européen de normalisation (CEN), août 1993 (version française éditée par l'AFNOR).
  • Roger Develay, « Traitements thermiques des alliages d'aluminium », traités Matériaux métalliques M1290, éditée par les Techniques de l'ingénieur, janvier 1986.
  • Bruno Dubost, Pierre Sainfort, « Durcissement par précipitation des alliages d'aluminium », traités Matériaux métalliques M240, éditée par les Techniques de l'ingénieur, octobre 1991.
  • Jean Philibert, Alain Vignes, Yves Bréchet, Pierre Combrade, Métallurgie, du minerai au matériau, Édition Dunod, 2e édition, 2002 (ISBN 2-10-006313-8).

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Trempe de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • trempe — [ trɑ̃p ] n. f. • 1559; tempre v. 1180; de tremper 1 ♦ Immersion dans un bain froid d un métal, d un alliage chauffé à haute température. Trempe de l acier. La trempe maintient la structure moléculaire acquise à chaud. ♢ Par ext. Qualité qu un… …   Encyclopédie Universelle

  • trempé — trempe [ trɑ̃p ] n. f. • 1559; tempre v. 1180; de tremper 1 ♦ Immersion dans un bain froid d un métal, d un alliage chauffé à haute température. Trempe de l acier. La trempe maintient la structure moléculaire acquise à chaud. ♢ Par ext. Qualité… …   Encyclopédie Universelle

  • trempé — trempé, ée (tran pé, pée) part. passé de tremper. 1°   Qui a été mis dans un liquide. Du linge trempé. Pinceau trempé dans la couleur. •   Le synode de l Ile de France, de la même main dont il venait de souscrire à la condamnation de Piscator, et …   Dictionnaire de la Langue Française d'Émile Littré

  • trempe — Trempe. s. f. v. Maniere de tremper le fer. Cet homme entend bien la trempe du fer. il a une trempe, il sçait une trempe admirable. donner la trempe. Il signifie aussi La qualité que le fer contracte quand on le trempe. Cette espée est d une… …   Dictionnaire de l'Académie française

  • trempe — s. f. 1. Aro ou triângulo de ferro que assenta sobre três pés e sobre o qual se coloca a panela ao lume. 2. Espécie de jogo de vaza. 3.  [Informal] Trindade. 4. Três pessoas que têm ideias ou interesses comuns. 5.  [Marinha] Jangada formada com… …   Dicionário da Língua Portuguesa

  • trempé — Trempé, [tremp]ée. part. pass …   Dictionnaire de l'Académie française

  • trempe — var. tramp n.2, temper. Obs …   Useful english dictionary

  • trempe — (tran p ) s. f. 1°   Action de tremper dans un liquide, d humecter.    Terme d imprimerie. Action d humecter le papier pour imprimer.    Dans les brasseries, eau propre à faire fermenter le grain.    Mise en trempe, mise de la matière de l amidon …   Dictionnaire de la Langue Française d'Émile Littré

  • TREMPE — s. f. Action, manière de tremper le fer. Cet homme entend bien la trempe du fer. Donner la trempe.   Il signifie aussi, La qualité que le fer contracte quand on le trempe. Cette épée est d une bonne trempe. La trempe de ce coutelas est fort bonne …   Dictionnaire de l'Academie Francaise, 7eme edition (1835)

  • TREMPE — n. f. T. d’Arts Action, manière de tremper le fer, l’acier, le bronze, le verre, etc. La trempe du fer. Donner la trempe. Il désigne aussi la Qualité que le fer, l’acier, etc., contracte quand on le trempe. Cette épée est d’une bonne trempe. La… …   Dictionnaire de l'Academie Francaise, 8eme edition (1935)


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.