Automorphismes de corps non continus de C

Automorphisme de corps non continu de C

Bien que le seul automorphisme de corps de \mathbb{R} soit l'identité et que les seuls automorphismes de corps continus de \mathbb{C} soient l'identité et la conjugaison, l'usage de l'axiome du choix (à deux reprises) permet de construire d'autres automorphismes de corps de \mathbb{C} qui ne sont pas continus.

Construction

Soit E l'ensemble des sous-corps de \mathbb{C} ne contenant pas \sqrt{2}. E est non vide (car il contient par exemple \mathbb{Q}) et ordonné (partiellement) par l'inclusion. On vérifie aisément que c'est alors un ensemble inductif. D'après le lemme de Zorn, il possède donc un élément maximal K.

La maximalité de K permet de montrer que l'extension K(\sqrt{2}) \to \mathbb{C} est algébrique et \mathbb{C} est algébriquement clos; tout automorphisme de corps de K(\sqrt{2}) se prolonge donc en un automorphisme de corps de \mathbb{C} (ce résultat est classique et utilise lui aussi l'axiome du choix). En considérant l'automorphisme de K(\sqrt{2}) fixant K point par point et envoyant \sqrt{2} sur -\sqrt{2}, on obtient alors un automorphisme de corps de \mathbb{C} autre que l'identité et la conjugaison : il n'est donc pas continu et même discontinu en tout point. On peut ensuite démontrer qu'il n'est pas mesurable et que l'image de \mathbb{R} est dense : ainsi, l'axiome du choix entraîne l'existence d'un sous-corps dense de \mathbb{C} isomorphe à \mathbb{R}.

Voir aussi

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Automorphisme de corps non continu de C ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Automorphismes de corps non continus de C de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Automorphisme De Corps Non Continu De C — Bien que le seul automorphisme de corps de soit l identité et que les seuls automorphismes de corps continus de soient l identité et la conjugaison, l usage de l axiome du choix (à deux reprises) permet de construire d autres automorphismes de… …   Wikipédia en Français

  • Automorphisme de corps non continu de c — Bien que le seul automorphisme de corps de soit l identité et que les seuls automorphismes de corps continus de soient l identité et la conjugaison, l usage de l axiome du choix (à deux reprises) permet de construire d autres automorphismes de… …   Wikipédia en Français

  • Automorphisme de corps non continu de C — Bien que le seul automorphisme de corps de soit l identité et que les seuls automorphismes de corps continus de soient l identité et la conjugaison, l usage de l axiome du choix (à deux reprises) permet de construire d autres automorphismes de… …   Wikipédia en Français

  • Automorphismes — Automorphisme Un automorphisme est un isomorphisme d un objet mathématique X dans lui même. Autrement dit, c est une bijection de X dans X qui préserve la « structure » de X. On peut le voir comme une symétrie de X. Sommaire 1… …   Wikipédia en Français

  • Lemme De Zorn — En mathématiques, Le lemme de Zorn (ou théorème de Zorn, ou parfois lemme de Kuratowski Zorn), est un théorème de la théorie des ensembles qui affirme qu un ensemble ordonné tel que toute chaîne (sous ensemble totalement ordonné) possède un… …   Wikipédia en Français

  • Lemme de zorn — En mathématiques, Le lemme de Zorn (ou théorème de Zorn, ou parfois lemme de Kuratowski Zorn), est un théorème de la théorie des ensembles qui affirme qu un ensemble ordonné tel que toute chaîne (sous ensemble totalement ordonné) possède un… …   Wikipédia en Français

  • Sous-corps exotique de r — En mathématiques, un sous corps exotique de est un sous corps indénombrable strict de construit à l aide du lemme de Zorn (et donc de l axiome du choix). Exemple Soit E l ensemble des sous corps de ne contenant pas …   Wikipédia en Français

  • Sous-corps exotique de R — En mathématiques, un sous corps exotique de est un sous corps indénombrable strict de construit à l aide du lemme de Zorn (et donc de l axiome du choix). Exemple Soit E l ensemble des sous corps de ne contenant pas . E …   Wikipédia en Français

  • Theoreme de la base incomplete — Théorème de la base incomplète Le théorème de la base incomplète énonce que toute famille libre de vecteurs d un espace vectoriel E peut être complétée pour obtenir une base de E. Sommaire 1 Enoncé 2 Démonstration 2.1 …   Wikipédia en Français

  • Groupe de Lie — En mathématiques, un groupe de Lie est un groupe « lisse », c est à dire qu il possède une structure différentiable pour laquelle les opérations de groupe – multiplication et inversion – sont différentiables. Les groupes de Lie sont… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”