Automorphisme de corps non continu de c

Automorphisme de corps non continu de C

Bien que le seul automorphisme de corps de \mathbb{R} soit l'identité et que les seuls automorphismes de corps continus de \mathbb{C} soient l'identité et la conjugaison, l'usage de l'axiome du choix (à deux reprises) permet de construire d'autres automorphismes de corps de \mathbb{C} qui ne sont pas continus.

Construction

Soit E l'ensemble des sous-corps de \mathbb{C} ne contenant pas \sqrt{2}. E est non vide (car il contient par exemple \mathbb{Q}) et ordonné (partiellement) par l'inclusion. On vérifie aisément que c'est alors un ensemble inductif. D'après le lemme de Zorn, il possède donc un élément maximal K.

La maximalité de K permet de montrer que l'extension K(\sqrt{2}) \to \mathbb{C} est algébrique et \mathbb{C} est algébriquement clos; tout automorphisme de corps de K(\sqrt{2}) se prolonge donc en un automorphisme de corps de \mathbb{C} (ce résultat est classique et utilise lui aussi l'axiome du choix). En considérant l'automorphisme de K(\sqrt{2}) fixant K point par point et envoyant \sqrt{2} sur -\sqrt{2}, on obtient alors un automorphisme de corps de \mathbb{C} autre que l'identité et la conjugaison : il n'est donc pas continu et même discontinu en tout point. On peut ensuite démontrer qu'il n'est pas mesurable et que l'image de \mathbb{R} est dense : ainsi, l'axiome du choix entraîne l'existence d'un sous-corps dense de \mathbb{C} isomorphe à \mathbb{R}.

Voir aussi

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Automorphisme de corps non continu de C ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Automorphisme de corps non continu de c de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Automorphisme De Corps Non Continu De C — Bien que le seul automorphisme de corps de soit l identité et que les seuls automorphismes de corps continus de soient l identité et la conjugaison, l usage de l axiome du choix (à deux reprises) permet de construire d autres automorphismes de… …   Wikipédia en Français

  • Automorphisme de corps non continu de C — Bien que le seul automorphisme de corps de soit l identité et que les seuls automorphismes de corps continus de soient l identité et la conjugaison, l usage de l axiome du choix (à deux reprises) permet de construire d autres automorphismes de… …   Wikipédia en Français

  • Automorphismes de corps non continus de C — Automorphisme de corps non continu de C Bien que le seul automorphisme de corps de soit l identité et que les seuls automorphismes de corps continus de soient l identité et la conjugaison, l usage de l axiome du choix (à deux reprises) permet de… …   Wikipédia en Français

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • Liste des articles de mathematiques — Projet:Mathématiques/Liste des articles de mathématiques Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou probabilités et statistiques via l un des trois bandeaux suivants  …   Wikipédia en Français

  • Théorie des corps de classes — En mathématiques, la théorie des corps de classes est une branche majeure de la théorie algébrique des nombres qui a pour objet la classification des extensions abéliennes, c est à dire galoisiennes et de groupe de Galois commutatif, d un corps… …   Wikipédia en Français

  • Theorie des corps de classes — Théorie des corps de classes En mathématiques, la théorie du corps de classes est une branche majeure de la théorie algébrique des nombres qui a pour objet la classification des extensions abéliennes, c est à dire galoisiennes et de groupe de… …   Wikipédia en Français

  • Théorie des corps de classe — Théorie des corps de classes En mathématiques, la théorie du corps de classes est une branche majeure de la théorie algébrique des nombres qui a pour objet la classification des extensions abéliennes, c est à dire galoisiennes et de groupe de… …   Wikipédia en Français

  • Théorie du corps de classes — Théorie des corps de classes En mathématiques, la théorie du corps de classes est une branche majeure de la théorie algébrique des nombres qui a pour objet la classification des extensions abéliennes, c est à dire galoisiennes et de groupe de… …   Wikipédia en Français

  • Conjectures de Weil — En mathématiques, les conjectures de Weil, qui sont devenues des théorèmes en 1974, ont été des propositions très influentes à la fin des années 1940 énoncées par André Weil sur les fonctions génératrices (connues sous le nom de fonctions zêta… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”