Application Affine

Application affine

C’est Euler, en 1748, qui est à l’origine du terme « transformation affine », car dit-il, « deux courbes images l’une de l’autre par une telle transformation présentent entre elles une certaine affinité ».

De nos jours, une application affine est une application entre deux espaces affines qui préserve la structure affine, c'est-à-dire qui envoie les droites, plans, espaces,... en des droites, plans, espaces, ... tout en préservant la notion de parallélisme.

France1.gifFrance affine.gif

Sommaire

Définition et premières propriétés

Une application f:M \mapsto M' d'un espace affine  E\, vers un espace affine  E'\, est dite affine s'il existe une application linéaire \vec f de l'espace vectoriel \vec E associé à E\, vers l'espace vectoriel \vec E' associé à E'\,, appelée la partie linéaire de f\,, satisfaisant :

\vec f(\overrightarrow{MN})=\overrightarrow{M'N'},

pour tous points M\, et N\, de E\,.

Une application affine est donc déterminée par la donnée d'un couple de points homologues O\, et O'\, et de sa partie linéaire :

f(M) = O' + \vec f(\overrightarrow{OM}),

Si E est de dimension n, elle est également déterminée par la donnée de n + 1 points formant un repère affine et de leurs images.

Définitions équivalentes :

  • Application linéaire d'un vectorialisé E_O\, de E\,, vers un vectorialisé E'_{O'}\, de E'\,.
  • Application conservant les barycentres.

Deux sous-affines parallèles dans  E\, ont pour image des sous-espaces affines parallèles dans  E'\, (les applications affines préservent le parallélisme).

Une application affine d'un espace affine dans lui même est appelée endomorphisme affine, et un endomorphisme bijectif est appelé un automorphisme, ou plus couramment une transformation affine. Les transformations affines forment un groupe, appelé le groupe affine de E\,, noté GA(E)\,

Exemples d'endomorphismes affines

  • les translations (caractérisation : partie linéaire = l'identité).
  • plus généralement, les homothéties (affines) (caractérisation : partie linéaire = une homothétie (vectorielle), uniquement dans le cas d'un rapport différent de 1)
  • les symétries (affines) (caractérisation : au moins un point fixe et partie linéaire = une involution, ou application affine de carré égal à l'identité)
  • les projections (affines) (caractérisation : au moins un point fixe et partie linéaire = un projecteur, ou application affine de carré égal à elle-même)
  • les affinités, comprenant toutes les précédentes

Points fixes des endomorphismes affines

Les points fixes jouent un rôle important pour les endomorphismes affines car un endomorphisme affine ayant un point fixe O\, est "moralement" une application linéaire (du vectorialisé E_O\,).

S'il est non vide, l'ensemble des points fixes de l'endomorphisme affine f\, est un sous-espace affine de direction Ker(\vec f-id_{\vec E}) : de plus si Im (\vec f-id_{\vec E})=\vec E, alors il existe au moins un point invariant pour f\,. On en déduit qu'en dimension finie si la partie linéaire de f\, a un unique vecteur invariant, alors f\, a un unique point invariant.

D'autre part, pour un endomorphisme affine f\, sans point fixe, on trouve facilement une translation qui, composée avec f\,, donne une application ayant un point fixe, mais cette translation ne commute pas avec f\, en général. Cependant, si \vec E=Ker(\vec f-id_{\vec E})\oplus Im(\vec f-id_{\vec E}), il existe un unique vecteur u\, et une unique application affine g\, ayant un point fixe telle que f=t_u \circ g=g\circ t_u ; c'est le cas par exemple des symétries glissées.

Transformation affine comme cas particulier d'homographie

L'espace affine E\, peut être complété par un hyperplan à l'infini H\, en un espace projectif \hat E ; une transformation affine f\, de E\, se prolonge alors de façon unique en une transformation projective, ou homographie de \hat E, laissant H\, invariant.

Réciproquement, toute homographie laissant un hyperplan invariant se restreint dans le complémentaire de cet hyperplan à une transformation affine.

En raccourci, les transformations affines sont les homographies ayant un hyperplan invariant, et on en déduit que le groupe affine est un sous-groupe du groupe projectif.

Les applications affines dans \mathbb K^n

Les applications affines dans \mathbb K sont exactement les applications f:\mathbb K\to \mathbb K de la forme

f(x)=ax+b, \quad \forall x\in\mathbb K

avec a\, et b\, deux réels quelconques. L'application linéaire qui lui est associée est \vec f:\mathbb K \to \mathbb K avec

\vec f(x)=ax,\quad \forall x\in\mathbb K.

De façon plus générale, une application affine f:\mathbb K^n\to\mathbb K^m est une application de la forme

f(X)=A\cdot X+B

A\, est une matrice m\times n et B\, une matrice m\times 1. L'application linéaire associée est \vec f:\mathbb K^n\to\mathbb K^m définie par

\vec f(X)=A\cdot X,\quad \forall X\in\mathbb K^{n\times 1}

Translations et affinités dans \mathbb R^n

  • L'application T est une translation de vecteur \vec v si et seulement si

A=I_n,\quad B=\vec v.

  • L'application T est une affinité de coefficient k si et seulement si la matrice A n'admet pour valeurs propres que 1 et k, et si les espaces propres associés sont supplémentaires (la somme de leurs dimensions est égale à n, l'une d'elle pouvant être nulle).
    • En particulier, si k = 0, l'affinité est une projection (la matrice A représente une projection vectorielle dans \mathbb R^n).
    • Si k = − 1, alors l'affinité est une symétrie (la matrice A représente une symétrie vectorielle).
    • Si A n'admet qu'une seule valeur propre k\neq 1 de multiplicité n, alors T est une homothétie de rapport k et de centre P qui est l'unique point solution du système linéaire

(I_n-A)\cdot X=B.

Caractérisations géométriques des applications affines

On suppose dans ce paragraphe que \mathbb K=\mathbb{R} et que les espaces sont de dimension finie.

1) Les applications affines sont les applications conservant les barycentres.

Ceci vaut aussi bien pour les barycentres de familles finies que des centres d'inertie de parties munies de fonctions de masse ; le centre d'inertie d'un objet aura pour image par une application affine le centre d'inertie de l'objet image.

Grâce à l'associativité, on peut réduire la condition au fait de conserver les barycentres de deux points, mais on ne peut aller jusqu'à la conservation des milieux : les applications conservant les milieux sont les applications \mathbb{Q}-affines, et on peut construire par l'axiome du choix des applications \mathbb{Q}-affines non \mathbb{R}-affines.

Cependant, on peut montrer que

2) Les applications affines sont les applications continues conservant les milieux.

Remarque : la propriété de conservation des milieux équivaut à celle de conservation des parallélogrammes.


3) En dimension \ge 2, les transformations affines sont les bijections transformant une droite en une droite.

Ceci est une version du théorème fondamental de la géométrie affine. Il est remarquable qu'il n'y ait pas besoin de préciser que deux droites parallèles ont des images parallèles.

On peut même restreindre la caractérisation à :

4) En dimension \ge 2, les transformations affines sont les bijections transformant 3 points alignés en 3 points alignés.

Voir la page théorème fondamental de la géométrie affine pour plus de précisions.

Voir aussi

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Application affine ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Application Affine de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Application affine —  Ne pas confondre avec la transformation géométrique appelée « affinité ». En géométrie, une application affine est une application entre deux espaces affines compatible avec leur structure, c est à dire qui envoie les droites,… …   Wikipédia en Français

  • affine — [ afin ] adj. • XXe; fém. de affin 1 ♦ Biol. Formes affines, présentant des ressemblances ne traduisant pas toujours des liens de parenté. Les sélaginelles sont affines aux lycopodes. 2 ♦ Math. Transformation affine : transformation dans le plan… …   Encyclopédie Universelle

  • AFFINE (APPLICATION) — AFFINE APPLICATI Soit E et F deux espaces vectoriels sur un corps commutatif K et A et B des espaces affines attachés à E et F. On dit qu’une application u de A dans B est une application linéaire affine (ou application affine) si, quelle que… …   Encyclopédie Universelle

  • Affine — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Sur les autres projets Wikimedia : « Affine », sur le Wiktionnaire (dictionnaire universel) Mathématiques En mathématiques, l adjectif… …   Wikipédia en Français

  • Application Projective — Une application projective est une application entre deux espaces projectifs qui préserve la structure projective, c est à dire qui envoie les droites, plans, espaces,... en des droites, plans, espaces. ➪ Sommaire 1 Définition et premières… …   Wikipédia en Français

  • Affine arithmetic — (AA) is a model for self validated numerical analysis. In AA, the quantities of interest are represented as affine combinations (affine forms) of certain primitive variables, which stand for sources of uncertainty in the data or approximations… …   Wikipedia

  • Application exponentielle — Cet article concerne la géométrie différentielle. Pour la fonction réciproque du logarithme, voir fonction exponentielle. L application exponentielle de la sphère (ici, le globe terrestre, en prenant comme origine le …   Wikipédia en Français

  • Application projective — Une application projective est une application entre deux espaces projectifs qui préserve la structure projective, c est à dire qui envoie les droites, plans, espaces,… en des droites, plans, espaces. ➪ Sommaire 1 Définition et premières… …   Wikipédia en Français

  • Application linéaire par morceaux —  Ne pas confondre avec la notion de fonction affine par morceaux en analyse. Une application linéaire par morceaux en 2D (en haut) et les polytopes convexes sur lesquels elle est linéaire (en bas) …   Wikipédia en Français

  • Affine transformation — In geometry, an affine transformation or affine map or an affinity (from the Latin, affinis , connected with ) between two vector spaces (strictly speaking, two affine spaces) consists of a linear transformation followed by a translation::x… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”